Chiara Rinoldi, PhD


Doctoral thesis
2020-09-08Spun fiber-based scaffolds for tendon tissue engineering  (Politechnika Warszawska)
supervisor -- Wojciech Święszkowski, PhD, DSc, PW
supervisor -- Ewa Kijeńska-Gawrońska, PhD, DSc, PW
1453 
Recent publications
1.Kosik-Kozioł A., Nakielski P., Rybak D., Frączek W., Rinoldi C., Lanzi M., Grodzik M., Pierini F., Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.4c06662, Vol.16, No.25, pp.32128-32146, 2024
Abstract:

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a “green” cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core–shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches’ exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches’ moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.

Keywords:

atopic dermatitis, core−shell electrospun nanofibers, antibacterial, mucoadhesive, moisturizing patch

Affiliations:
Kosik-Kozioł A.-IPPT PAN
Nakielski P.-IPPT PAN
Rybak D.-IPPT PAN
Frączek W.-other affiliation
Rinoldi C.-IPPT PAN
Lanzi M.-University of Bologna (IT)
Grodzik M.-other affiliation
Pierini F.-IPPT PAN
2.Nakielski P., Kosik-Kozioł A., Rinoldi C., Rybak D., Namdev M., Jacob W., Lehmann T., Głowacki M., Bogusz S., Rzepna M., Marinelli M., Lanzi M., Dror S., Sarah M., Dmitriy S., Pierini F., Injectable PLGA Microscaffolds with Laser-Induced Enhanced Microporosity for Nucleus Pulposus Cell Delivery, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202404963, pp.2404963-1-15, 2024
Abstract:

Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.

Affiliations:
Nakielski P.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Rinoldi C.-IPPT PAN
Rybak D.-IPPT PAN
Namdev M.-other affiliation
Jacob W.-other affiliation
Lehmann T.-other affiliation
Głowacki M.-Jagiellonian University (PL)
Bogusz S.-other affiliation
Rzepna M.-other affiliation
Marinelli M.-other affiliation
Lanzi M.-University of Bologna (IT)
Dror S.-other affiliation
Sarah M.-other affiliation
Dmitriy S.-other affiliation
Pierini F.-IPPT PAN
3.Ziai Y., Rinoldi C., Francesca P., Zakrzewska A., Sio Luciano D., Pierini F., Lysozyme-sensitive plasmonic hydrogel nanocomposite for colorimetric dry-eye inflammation biosensing, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/d4nr01701c, pp.1-11, 2024
Abstract:

Detection of lysozyme levels in ocular fluids is considered crucial for diagnosing and monitoring various health and eye conditions, including dry-eye syndrome. Hydrogel-based nanocomposites have been demonstrated to be one of the most promising platforms for fast and accurate sensing of different biomolecules. In this work, hydrogel, electrospun nanofibers, and plasmonic nanoparticles are combined to fabricate a sensitive and easy-to-use biosensor for lysozyme. Poly(L-lactide-co-caprolactone) (PLCL) nanofibers were covered with silver nanoplates (AgNPls), providing a stable plasmonic platform, where a poly(N-isopropylacrylamide)-based (PNIPAAm) hydrogel layer allows mobility and good integration of the biomolecules. By integrating these components, the platform can also exhibit a colorimetric response to the concentration of lysozyme, allowing for easy and non-invasive monitoring. Quantitative biosensing operates on the principle of localized surface plasmon resonance (LSPR) induced by plasmonic nanoparticles. Chemical, structural, thermal, and optical characterizations were performed on each platform layer, and the platform's ability to detect lysozyme at concentrations relevant to those found in tears of patients with dry-eye syndrome and other related diseases was investigated by colorimetry and UV-Vis spectroscopy. This biosensor's sensitivity and rapid response time, alongside the easy detection by the naked eye, make it a promising tool for early diagnosis and treatment monitoring of eye diseases.

Affiliations:
Ziai Y.-IPPT PAN
Rinoldi C.-IPPT PAN
Francesca P.-other affiliation
Zakrzewska A.-IPPT PAN
Sio Luciano D.-other affiliation
Pierini F.-IPPT PAN
4.Rybak D., Rinoldi C., Nakielski P., Du J., Haghighat Bayan M.A., Zargarian S. S., Pruchniewski M., Li X., Strojny-Cieślak B., Ding B., Pierini F., Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/D3TB02693K, pp.1-21, 2024
Abstract:

Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug – ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites’ photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials’ biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.

Affiliations:
Rybak D.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Du J.-University of California (US)
Haghighat Bayan M.A.-IPPT PAN
Zargarian S. S.-IPPT PAN
Pruchniewski M.-other affiliation
Li X.-Donghua University (CN)
Strojny-Cieślak B.-other affiliation
Ding B.-Donghua University (CN)
Pierini F.-IPPT PAN
5.Haghighat Bayan M.A., Rinoldi C., Rybak D., Zargarian S. S., Zakrzewska A., Cegielska O., Põhako-Palu K., Zhang S., Stobnicka-Kupiec A., Górny Rafał L., Nakielski P., Kogermann K., De Sio L., Ding B., Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, pp.1-15, 2024
Abstract:

The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks.

Affiliations:
Haghighat Bayan M.A.-IPPT PAN
Rinoldi C.-IPPT PAN
Rybak D.-IPPT PAN
Zargarian S. S.-IPPT PAN
Zakrzewska A.-IPPT PAN
Cegielska O.-IPPT PAN
Põhako-Palu K.-other affiliation
Zhang S.-other affiliation
Stobnicka-Kupiec A.-other affiliation
Górny Rafał L.-other affiliation
Nakielski P.-IPPT PAN
Kogermann K.-other affiliation
De Sio L.-Sapienza University of Rome (IT)
Ding B.-Donghua University (CN)
Pierini F.-IPPT PAN
6.Haghighat Bayan M.A., Rinoldi C., Kosik-Kozioł A., Bartolewska M., Rybak D., Zargarian S., Shah S., Krysiak Z., Zhang S., Lanzi M., Nakielski P., Ding B., Pierini F., Solar-to-NIR Light Activable PHBV/ICG Nanofiber-Based Face Masks with On-Demand Combined Photothermal and Photodynamic Antibacterial Properties, Advanced Materials Technologies, ISSN: 2365-709X, DOI: 10.1002/admt.202400450, pp.2400450-1-18, 2024
Abstract:

Hierarchical nanostructures fabricate by electrospinning in combination with light-responsive agents offer promising scenarios for developing novel activable antibacterial interfaces. This study introduces an innovative antibacterial face mask developed from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers integrated with indocyanine green (ICG), targeting the urgent need for effective antimicrobial protection for community health workers. The research focuses on fabricating and characterizing this nanofibrous material, evaluating the mask's mechanical and chemical properties, investigating its particle filtration, and assessing antibacterial efficacy under photothermal conditions for reactive oxygen species (ROS) generation. The PHBV/ICG nanofibers are produced using an electrospinning process, and the nanofibrous construct's morphology, structure, and photothermal response are investigated. The antibacterial efficacy of the nanofibers is tested, and substantial bacterial inactivation under both near-infrared (NIR) and solar irradiation is demonstrated due to the photothermal response of the nanofibers. The material's photothermal response is further analyzed under cyclic irradiation to simulate real-world conditions, confirming its durability and consistency. This study highlights the synergistic impact of PHBV and ICG in enhancing antibacterial activity, presenting a biocompatible and environmentally friendly solution. These findings offer a promising path for developing innovative face masks that contribute significantly to the field of antibacterial materials and solve critical public health challenges.

Affiliations:
Haghighat Bayan M.A.-IPPT PAN
Rinoldi C.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Bartolewska M.-IPPT PAN
Rybak D.-IPPT PAN
Zargarian S.-IPPT PAN
Shah S.-IPPT PAN
Krysiak Z.-IPPT PAN
Zhang S.-other affiliation
Lanzi M.-University of Bologna (IT)
Nakielski P.-IPPT PAN
Ding B.-Donghua University (CN)
Pierini F.-IPPT PAN
7.Ziai Y., Lanzi M., Rinoldi C., Zargarian S. S., Zakrzewska A., Kosik-Kozioł A., Nakielski P., Pierini F., Developing strategies to optimize the anchorage between electrospun nanofibers and hydrogels for multi-layered plasmonic biomaterials, Nanoscale Advances, ISSN: 2516-0230, DOI: 10.1039/d3na01022h, pp.1-13, 2024
Abstract:

Polycaprolactone (PCL), a recognized biopolymer, has emerged as a prominent choice for diverse biomedical endeavors due to its good mechanical properties, exceptional biocompatibility, and tunable properties. These attributes render PCL a suitable alternative biomaterial to use in biofabrication, especially the electrospinning technique, facilitating the production of nanofibers with varied dimensions and functionalities. However, the inherent hydrophobicity of PCL nanofibers can pose limitations. Conversely, acrylamide-based hydrogels, characterized by their interconnected porosity, significant water retention, and responsive behavior, present an ideal matrix for numerous biomedical applications. By merging these two materials, one can harness their collective strengths while potentially mitigating individual limitations. A robust interface and effective anchorage during the composite fabrication are pivotal for the optimal performance of the nanoplatforms. Nanoplatforms are subject to varying degrees of tension and physical alterations depending on their specific applications. This is particularly pertinent in the case of layered nanostructures, which require careful consideration to maintain structural stability and functional integrity in their intended applications. In this study, we delve into the influence of the fiber dimensions, orientation and surface modifications of the nanofibrous layer and the hydrogel layer's crosslinking density on their intralayer interface to determine the optimal approach. Comprehensive mechanical pull-out tests offer insights into the interfacial adhesion and anchorage between the layers. Notably, plasma treatment of the hydrophobic nanofibers and the stiffness of the hydrogel layer significantly enhance the mechanical effort required for fiber extraction from the hydrogels, indicating improved anchorage. Furthermore, biocompatibility assessments confirm the potential biomedical applications of the proposed nanoplatforms.

Affiliations:
Ziai Y.-IPPT PAN
Lanzi M.-University of Bologna (IT)
Rinoldi C.-IPPT PAN
Zargarian S. S.-IPPT PAN
Zakrzewska A.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
8.Rinoldi C., Ziai Y., Zargarian Seyed S., Nakielski P., Zembrzycki K., Haghighat Bayan M.A., Zakrzewska A., Fiorelli R., Lanzi M., Kostrzewska-Księżyk A., Czajkowski R., Kublik E., Kaczmarek L., Pierini F., In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.2c17025, Vol.15, No.5, pp.6283-6296, 2023
Abstract:

In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain–computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today’s major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.

Keywords:

brain−machine interface,conductive hydrogels,nanostructured biomaterials,in vitro and in vivo biocompatibility,long-term neural recording

Affiliations:
Rinoldi C.-IPPT PAN
Ziai Y.-IPPT PAN
Zargarian Seyed S.-IPPT PAN
Nakielski P.-IPPT PAN
Zembrzycki K.-IPPT PAN
Haghighat Bayan M.A.-IPPT PAN
Zakrzewska A.-IPPT PAN
Fiorelli R.-IPPT PAN
Lanzi M.-University of Bologna (IT)
Kostrzewska-Księżyk A.-other affiliation
Czajkowski R.-other affiliation
Kublik E.-other affiliation
Kaczmarek L.-other affiliation
Pierini F.-IPPT PAN
9.Nakielski P., Rybak D., Jezierska-Woźniak K., Rinoldi C., Sinderewicz E., Staszkiewicz-Chodor J., Haghighat Bayan M.A., Czelejewska W., Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M., Skomorowski M., Holak P., Lipiński S., Maksymowicz W., Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023
Abstract:

Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.

Keywords:

microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning

Affiliations:
Nakielski P.-IPPT PAN
Rybak D.-IPPT PAN
Jezierska-Woźniak K.-other affiliation
Rinoldi C.-IPPT PAN
Sinderewicz E.-other affiliation
Staszkiewicz-Chodor J.-other affiliation
Haghighat Bayan M.A.-IPPT PAN
Czelejewska W.-other affiliation
Urbanek-Świderska O.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Barczewska M.-University of Warmia and Mazury in Olsztyn (PL)
Skomorowski M.-other affiliation
Holak P.-other affiliation
Lipiński S.-other affiliation
Maksymowicz W.-University of Warmia and Mazury in Olsztyn (PL)
Pierini F.-IPPT PAN
10.Ziai Y., Zargarian S. S., Rinoldi C., Nakielski P., Sola A., Lanzi M., Truong Yen B., Pierini F., Conducting polymer-based nanostructured materials for brain–machine interfaces, WIREs Nanomedicine and Nanobiotechnology, ISSN: 1939-0041, DOI: 10.1002/wnan.1895, Vol.15, No.5, pp.e1895-1-33, 2023
Abstract:

As scientists discovered that raw neurological signals could translate into bioelectric information, brain–machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field.

Keywords:

3D printing,brain–machine interface,conductive hydrogels,electrospinning,neural recording

Affiliations:
Ziai Y.-IPPT PAN
Zargarian S. S.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Sola A.-other affiliation
Lanzi M.-University of Bologna (IT)
Truong Yen B.-other affiliation
Pierini F.-IPPT PAN
11.Rybak D., Su Y., Li Y., Ding B., Lv X., Li Z., Yeh Y., Nakielski P., Rinoldi C., Pierini F., Dodda Jagan M., Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D3NR00807J, Vol.15, No.18, pp.8044-8083, 2023
Abstract:

Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.

Affiliations:
Rybak D.-IPPT PAN
Su Y.-other affiliation
Li Y.-other affiliation
Ding B.-Donghua University (CN)
Lv X.-other affiliation
Li Z.-other affiliation
Yeh Y.-other affiliation
Nakielski P.-IPPT PAN
Rinoldi C.-IPPT PAN
Pierini F.-IPPT PAN
Dodda Jagan M.-other affiliation
12.Paradiso A., Volpi M., Rinoldi C., Celikkin N., Contessi Negrini N., Bilgen M., Dallera G., Pierini F., Costantini M., Święszkowski W., Farè S., In vitro functional models for human liver diseases and drug screening: beyond animal testing, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d1bm01872h, Vol.11, No.9, pp.2988-3015, 2023
13.Zakrzewska A., Zargarian S.S., Rinoldi C., Gradys A.D., Jarząbek D.M., Zanoni M., Gualandi C., Lanzi M., Pierini F., Electrospun Poly(vinyl alcohol)-Based Conductive Semi-interpenetrating Polymer Network Fibrous Hydrogel: A Toolbox for Optimal Cross-Linking, ACS Materials Au, ISSN: 2694-2461, DOI: 10.1021/acsmaterialsau.3c00025, Vol.3, No.5, pp.464-482, 2023
Abstract:

Cross-linking of poly(vinyl alcohol) (PVA) creates a three-dimensional network by bonding adjacent polymer chains. The cross-linked structure, upon immersion in water, turns into a hydrogel, which exhibits unique absorption properties due to the presence of hydrophilic groups within the PVA polymer chains and, simultaneously, ceases to be soluble in water. The properties of PVA can be adjusted by chemical modification or blending with other substances, such as polymers, e.g., conductive poly[3-(potassium-5-butanoate)thiophene-2,5-diyl] (P3KBT). In this work, PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) are successfully fabricated. The systems are obtained as a result of electrospinning of PVA/P3KBT precursor solutions with different polymer concentrations and then cross-linking using “green”, environmentally safe methods. One approach consists of thermal treatment (H), while the second approach combines stabilization with ethanol and heating (E). The comprehensive characterization allows to evaluate the correlation between the cross-linking methods and properties of nanofibrous hydrogels. While both methods are successful, the cross-linking density is higher in the thermally cross-linked samples, resulting in lower conductivity and swelling ratio compared to the E-treated samples. Moreover, the H-cross-linked systems have better mechanical properties─lower stiffness and greater tensile strength. All the tested systems are biocompatible, and interestingly, due to the presence of P3KBT, they show photoresponsivity to solar radiation generated by the simulator. The results indicate that both methods of PVA cross-linking are highly effective and can be applied to a specific system depending on the target, e.g., biomedical or electronic applications.

Keywords:

poly(vinyl alcohol),poly[3-(potassium-5-butanoate)thiophene-2.5-diyl],electrospun nanofibers,cross-linking,fibrous hydrogel,semi-IPN

Affiliations:
Zakrzewska A.-IPPT PAN
Zargarian S.S.-IPPT PAN
Rinoldi C.-IPPT PAN
Gradys A.D.-IPPT PAN
Jarząbek D.M.-IPPT PAN
Zanoni M.-other affiliation
Gualandi C.-University of Bologna (IT)
Lanzi M.-University of Bologna (IT)
Pierini F.-IPPT PAN
14.Rinoldi C., Kijeńska-Gawrońska E., Heljak M., Jaroszewicz J., Kamiński A., Khademhosseini A., Tamayol A., Swieszkowski W., Mesoporous Particle Embedded Nanofibrous Scaffolds Sustain Biological Factors for Tendon Tissue Engineering, ACS Materials Au, ISSN: 2694-2461, DOI: 10.1021/acsmaterialsau.3c00012, Vol.3, No.6, pp.636-645, 2023
15.Haghighat Bayan M.A., Dias Yasmin J., Rinoldi C., Nakielski P., Rybak D., Truong Yen B., Yarin A., Pierini F., Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications, Journal of Polymer Science, ISSN: 2642-4169, DOI: 10.1002/pol.20220747, Vol.61, No.7, pp.521-533, 2023
Abstract:

Over the last few years, traditional drug delivery systems (DDSs) have been transformed into smart DDSs. Recent advancements in biomedical nanotech-nology resulted in introducing stimuli-responsiveness to drug vehicles. Nano-
platforms can enhance drug release efficacy while reducing the side effects of drugs by taking advantage of the responses to specific internal or external stim-uli. In this study, we developed an electrospun nanofibrous photo-responsive DDSs. The photo-responsivity of the platform enables on-demand elevated drug release. Furthermore, it can provide a sustained release profile and pre-vent burst release and high concentrations of drugs. A coaxial electrospinning setup paired with an electrospraying technique is used to fabricate core-shell PVA-PLGA nanofibers decorated with plasmonic nanoparticles. The fabricated
nanofibers have a hydrophilic PVA and Rhodamine-B (RhB) core, while the shell is hydrophobic PLGA decorated with gold nanorods (Au NRs). The presence of plasmonic nanoparticles enables the platform to twice the amount of drug release besides exhibiting a long-term release. Investigations into the photo-responsive release mechanism demonstrate the system's potential as a “smart” drug delivery platform.

Keywords:

electrospun core-shell nanofibers,NIR-light activation,on-demand drug release,plasmonic nanoparticles,stimuli-responsive nanomaterials

Affiliations:
Haghighat Bayan M.A.-IPPT PAN
Dias Yasmin J.-other affiliation
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Rybak D.-IPPT PAN
Truong Yen B.-other affiliation
Yarin A.-Technion-Israel Institute of Technology (IL)
Pierini F.-IPPT PAN
16.Nakielski P., Rinoldi C., Pruchniewski M., Pawłowska S., Gazińska M., Strojny B., Rybak D., Jezierska-Woźniak K., Urbanek O., Denis P., Sinderewicz E., Czelejewska W., Staszkiewicz-Chodor J., Grodzik M., Ziai Y., Barczewska M., Maksymowicz W., Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022
Abstract:

The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.

Affiliations:
Nakielski P.-IPPT PAN
Rinoldi C.-IPPT PAN
Pruchniewski M.-other affiliation
Pawłowska S.-IPPT PAN
Gazińska M.-other affiliation
Strojny B.-other affiliation
Rybak D.-IPPT PAN
Jezierska-Woźniak K.-other affiliation
Urbanek O.-IPPT PAN
Denis P.-IPPT PAN
Sinderewicz E.-other affiliation
Czelejewska W.-other affiliation
Staszkiewicz-Chodor J.-other affiliation
Grodzik M.-other affiliation
Ziai Y.-IPPT PAN
Barczewska M.-University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W.-University of Warmia and Mazury in Olsztyn (PL)
Pierini F.-IPPT PAN
17.Quint J.P., Samandari M., Abbasi L., Mollocana E., Rinoldi C., Mostafavic A., Tamayol A., Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D1NR06143G, Vol.14, pp.797-814, 2022
Abstract:

Extreme loss of skeletal muscle overwhelms the natural regenerative capability of the body, results in permanent disability and substantial economic burden. Current surgical techniques result in poor healing, secondary injury to the autograft donor site, and incomplete recuperation of muscle function. Most current tissue engineering and regenerative strategies fail to create an adequate mechanical and biological environment that enables cell infiltration, proliferation, and myogenic differentiation. In this study, we present a nanoengineered skeletal muscle scaffold based on functionalized gelatin methacrylate (GelMA) hydrogel, optimized for muscle progenitors’ proliferation and differentiation. The scaffold was capable of controlling the release of insulin-like growth factor 1 (IGF-1), an important myogenic growth factor, by utilizing the electrostatic interactions with LAPONITE® nanoclays (NCs). Physiologically relevant levels of IGF-1 were maintained during a controlled release over two weeks. The NC was able to retain 50% of the released IGF-1 within the hydrogel niche, significantly improving cellular proliferation and differentiation compared to control hydrogels. IGF-1 supplemented medium controls required 44% more IGF-1 than the comparable NC hydrogel composites. The nanofunctionalized scaffold is a viable option for the treatment of extreme muscle injuries and offers scalable benefits for translational interventions and the growing field of clean meat production.

Affiliations:
Quint J.P.-University of Connecticut (US)
Samandari M.-University of Connecticut (US)
Abbasi L.-The City College of New York (US)
Mollocana E.-University of Nebraska (US)
Rinoldi C.-IPPT PAN
Mostafavic A.-University of Nebraska (US)
Tamayol A.-Massachusetts Institute of Technology (US)
18.Ziai Y., Petronella F., Rinoldi C., Nakielski P., Zakrzewska A., Kowalewski T.A., Augustyniak W., Li X., Calogero A., Sabała I., Ding B., De Sio L., Pierini F., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications, NPG Asia Materials, ISSN: 1884-4049, DOI: 10.1038/s41427-022-00365-9, Vol.14, pp.18-1-17, 2022
Abstract:

One of the most fascinating areas in the field of smart biopolymers is biomolecule sensing. Accordingly, multifunctional biomimetic, biocompatible, and stimuli-responsive materials based on hydrogels have attracted much interest. Within this framework, the design of nanostructured materials that do not require any external energy source is beneficial for developing a platform for sensing glucose in body fluids. In this article, we report the realization and application of an innovative platform consisting of two outer layers of a nanocomposite plasmonic hydrogel plus one inner layer of electrospun mat fabricated by electrospinning, where the outer layers exploit photoinitiated free radical polymerization, obtaining a compact and stable device. Inspired by the exceptional features of chameleon skin, plasmonic silver nanocubes are embedded into a poly(N-isopropylacrylamide)-based hydrogel network to obtain enhanced thermoresponsive and antibacterial properties. The introduction of an electrospun mat creates a compatible environment for the homogeneous hydrogel coating while imparting excellent mechanical and structural properties to the final system. Chemical, morphological, and optical characterizations were performed to investigate the structure of the layers and the multifunctional platform. The synergetic effect of the nanostructured system’s photothermal responsivity and antibacterial properties was evaluated. The sensing features associated with the optical properties of silver nanocubes revealed that the proposed multifunctional system is a promising candidate for glucose-sensing applications.

Affiliations:
Ziai Y.-IPPT PAN
Petronella F.-other affiliation
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Zakrzewska A.-IPPT PAN
Kowalewski T.A.-IPPT PAN
Augustyniak W.-Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Li X.-Donghua University (CN)
Calogero A.-Sapienza University of Rome (IT)
Sabała I.-Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Ding B.-Donghua University (CN)
De Sio L.-Sapienza University of Rome (IT)
Pierini F.-IPPT PAN
19.Liguori A., Pandini S., Rinoldi C., Zaccheroni N., Pierini F., Focarete M.L., Gualandi C., Thermoactive smart electrospun nanofibers, Macromolecular Rapid Communications, ISSN: 1022-1336, DOI: 10.1002/marc.202100694, Vol.43, No.5, pp.2100694-1-35, 2022
Abstract:

The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nanostructuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermoactive electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermoresponsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, are described and critically discussed. The difference in active species and outputs of the aforementioned categories is highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermoactive materials are pointed out, revealing how their development could take to utmost interesting achievements.

Keywords:

electrospinning, phase change materials, pyroelectric materials, shape memory polymers, thermoelectric materials, thermo-optically responsive materials, thermoresponsive materials

Affiliations:
Liguori A.-University of Bologna (IT)
Pandini S.-University of Brescia (IT)
Rinoldi C.-IPPT PAN
Zaccheroni N.-University of Bologna (IT)
Pierini F.-IPPT PAN
Focarete M.L.-University of Bologna (IT)
Gualandi C.-University of Bologna (IT)
20.Ziai Y., Rinoldi C., Nakielski P., De Sio L., Pierini F., Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application, Current Opinion in Biomedical Engineering, ISSN: 2468-4511, DOI: 10.1016/j.cobme.2022.100413, Vol.24, pp.100413-1-8, 2022
Abstract:

The importance of having a fast, accurate, and reusable track for detection has led to an increase investigation in the field of biosensing. Optical biosensing using plasmonic nanoparticles, such as gold and silver, introduces localized surface plasmon resonance (LSPR) sensors. LSPR biosensors are progressive in their sensing precision and detection limit. Also, the possibility to tune the sensing range by varying the size and shape of the particles has made them extremely useful. Hydrogels being hydrophilic 3D networks can be beneficial when used as matrices, because of a more efficient biorecognition. Stimuli-responsive hydrogels can be great candidates, as their response to a stimulus can increase recognition and detection. This article highlights recent advances in combining hydrogels as a matrix and plasmonic nanoparticles as sensing elements. The end capability and diversity of these novel biosensors in different applications in the near future are discussed.

Keywords:

Smart materials, Plasmonic hydrogel, Biosensing

Affiliations:
Ziai Y.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
De Sio L.-Sapienza University of Rome (IT)
Pierini F.-IPPT PAN
21.Rinoldi C., Lanzi M., Fiorelli R., Nakielski P., Zembrzycki K., Kowalewski T., Urbanek O., Jezierska-Woźniak K., Maksymowicz W., Camposeo A., Bilewicz R., Pisignano D., Sanai N., Pierini F., Pierini F., Three-dimensional printable conductive semi-interpenetrating polymer network hydrogel for neural tissue applications, BIOMACROMOLECULES, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.1c00524, Vol.22, No.7, pp.3084-3098, 2021
Abstract:

Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications.

Affiliations:
Rinoldi C.-IPPT PAN
Lanzi M.-University of Bologna (IT)
Fiorelli R.-other affiliation
Nakielski P.-IPPT PAN
Zembrzycki K.-IPPT PAN
Kowalewski T.-IPPT PAN
Grippo V.-other affiliation
Urbanek O.-IPPT PAN
Jezierska-Woźniak K.-other affiliation
Maksymowicz W.-University of Warmia and Mazury in Olsztyn (PL)
Camposeo A.-other affiliation
Bilewicz R.-other affiliation
Pisignano D.-other affiliation
Sanai N.-other affiliation
Pierini F.-IPPT PAN
22.Rinoldi C., Kijeńska-Gawrońska E., Khademhosseini A., Tamayol A., Swieszkowski W., Fibrous systems as potential solutions for tendon and ligament repair, healing, and regeneration, ADVANCED HEALTHCARE MATERIALS, ISSN: 2192-2659, DOI: 10.1002/adhm.202001305, Vol.10, No.7, pp.2001305 - 1-26, 2021
23.Rinoldi C., Zargarian S.S., Nakielski P., Li X., Liguori A., Petronella F., Presutti D., Wang Q., Costantini M., De Sio L., Gualandi C., Ding B., Pierini F., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines, Small Methods, ISSN: 2366-9608, DOI: 10.1002/smtd.202100402, Vol.5, No.9, pp.2100402-1-49, 2021
Abstract:

In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists’ enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.

Affiliations:
Rinoldi C.-IPPT PAN
Zargarian S.S.-IPPT PAN
Nakielski P.-IPPT PAN
Li X.-Donghua University (CN)
Liguori A.-University of Bologna (IT)
Petronella F.-other affiliation
Presutti D.-Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Wang Q.-Donghua University (CN)
Costantini M.-Sapienza University of Rome (IT)
De Sio L.-Sapienza University of Rome (IT)
Gualandi C.-University of Bologna (IT)
Ding B.-Donghua University (CN)
Pierini F.-IPPT PAN
24.Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L., Urbanek O., Zembrzycki K., Pruchniewski M., Lanzi M., Salatelli E., Calogero A., Kowalewski T.A., Yarin A.L., Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266, Vol.12, No.49, pp.54328-54342, 2020
Abstract:

Multifunctional nanomaterials with the ability torespond to near-infrared (NIR) light stimulation are vital for thedevelopment of highly efficient biomedical nanoplatforms with apolytherapeutic approach. Inspired by the mesoglea structure ofjellyfish bells, a biomimetic multifunctional nanostructured pillowwith fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatformwith several hierarchical levels designed to generate a series ofcontrolled, rapid, and reversible cascade-like structural changesupon NIR light irradiation. The mechanical contraction of thenanostructured platform, resulting from the increase of temper-ature to 42°C due to plasmonic hydrogel−light interaction, causesa rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. Themutual effects of the rise in temperature and waterflow stimulate the release of molecules from the nanofibers. To expand thepotential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level forperforming photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates theefficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirmsthe pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy.

Keywords:

bioinspired materials, NIR-light responsive nanomaterials, multifunctional platforms, electrospun nanofibers, plasmonic hydrogel, photothermal-based polytherapy, on-demand drug delivery

Affiliations:
Nakielski P.-IPPT PAN
Pawłowska S.-IPPT PAN
Rinoldi C.-IPPT PAN
Ziai Y.-IPPT PAN
De Sio L.-Sapienza University of Rome (IT)
Urbanek O.-IPPT PAN
Zembrzycki K.-IPPT PAN
Pruchniewski M.-other affiliation
Lanzi M.-University of Bologna (IT)
Salatelli E.-University of Bologna (IT)
Calogero A.-Sapienza University of Rome (IT)
Kowalewski T.A.-IPPT PAN
Yarin A.L.-Technion-Israel Institute of Technology (IL)
Pierini F.-IPPT PAN
25.Fallahi A., Yazdi I., Serex L., Lasha E., Faramarzi N., Tarlan F., Avci H., Almeida R., Sharifi F., Rinoldi C., Gomes M.E., Shin S.R., Khademhosseini A., Akbari M., Tamayol A., Customizable composite fibers for engineering skeletal muscle models, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.9b00992, Vol.6, No.2, pp.1112-1123, 2020
Abstract:

Engineering tissue-like scaffolds that can mimic the microstructure, architecture, topology, and mechanical properties of native tissues while offering an excellent environment for cellular growth has remained an unmet need. To address these challenges, multi-compartment composite fibers are fabricated. These fibers can be assembled through textile processes to tailor tissue-level mechanical and electrical properties independent of cellular level components. Textile technologies also allow controlling the distribution of different cell types and microstructure of fabricated constructs and directing cellular growth within 3D microenvironment. Here, we engineered composite fibers from biocompatible cores and biologically relevant hydrogel sheaths. The fibers are mechanically robust to be assembled using textile processes and could support adhesion, proliferation and maturation of cell populations important for engineering of skeletal muscles. We also demonstrated that the changes in the electrical conductivity of the multi-compartment fibers could significantly enhance myogenesis in vitro.

Keywords:

reinforced fibers, biotextiles, tissue engineering, organ weaving, interpenetrating network hydrogels, skeletal muscles

Affiliations:
Fallahi A.-Paul Scherrer Institut (CH)
Yazdi I.-Massachusetts Institute of Technology (US)
Serex L.-Brigham and Women's Hospital (US)
Lasha E.-Brigham and Women's Hospital (US)
Faramarzi N.-Brigham and Women's Hospital (US)
Tarlan F.-Brigham and Women's Hospital (US)
Avci H.-Eskisehir Osmangazi University (TR)
Almeida R.-Brigham and Women's Hospital (US)
Sharifi F.-Massachusetts Institute of Technology (US)
Rinoldi C.-other affiliation
Gomes M.E.-University of Minho (PT)
Shin S.R.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Akbari M.-Brigham and Women's Hospital (US)
Tamayol A.-Massachusetts Institute of Technology (US)
26.Pawłowska S., Rinoldi C., Nakielski P., Ziai Y., Urbanek O., Li X., Kowalewski T.A., Ding B., Pierini F., Ultraviolet light‐assisted electrospinning of core–shell fully cross‐linked P(NIPAAm‐co‐NIPMAAm) hydrogel‐based nanofibers for thermally induced drug delivery self‐regulation, Advanced Materials Interfaces, ISSN: 2196-7350, DOI: 10.1002/admi.202000247, Vol.7, No.12, pp.2000247-1-13, 2020
Abstract:

Body tissues and organs have complex functions which undergo intrinsic changes during medical treatments. For the development of ideal drug delivery systems, understanding the biological tissue activities is necessary to be able to design materials capable of changing their properties over time, on the basis of the patient's tissue needs. In this study, a nanofibrous thermal‐responsive drug delivery system is developed. The thermo‐responsivity of the system makes it possible to self‐regulate the release of bioactive molecules, while reducing the drug delivery at early stages, thus avoiding high concentrations of drugs which may be toxic for healthy cells. A co‐axial electrospinning technique is used to fabricate core–shell cross‐linked copolymer poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) (P(NIPAAm‐co‐NIPMAAm)) hydrogel‐based nanofibers. The obtained nanofibers are made of a core of thermo‐responsive hydrogel containing a drug model, while the outer shell is made of poly‐l‐lactide‐co‐caprolactone (PLCL). The custom‐made electrospinning apparatus enables the in situ cross‐linking of P(NIPAAm‐co‐NIPMAAm) hydrogel into a nanoscale confined space, which improves the electrospun nanofiber drug dosing process, by reducing its provision and allowing a self‐regulated release control. The mechanism of the temperature‐induced release control is studied in depth, and it is shown that the system is a promising candidate as a "smart" drug delivery platform.

Keywords:

biomimetic nanomaterials, electrospun core–shell nanofibers, hierarchical nanostructures, smart drug delivery, thermo‐responsive hydrogels

Affiliations:
Pawłowska S.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Ziai Y.-IPPT PAN
Urbanek O.-IPPT PAN
Li X.-Donghua University (CN)
Kowalewski T.A.-IPPT PAN
Ding B.-Donghua University (CN)
Pierini F.-IPPT PAN
27.Nasajpour A., Mostafavi A., Chlanda A., Rinoldi C., Sharifi S., Ji M.S., Ye M., Jonas S.J., Święszkowski W., Weiss P.S., Khademhosseini A., Tamayol A., Cholesteryl ester liquid crystal nanofibers for tissue engineering applications, ACS Materials Letters, ISSN: 2639-4979, DOI: 10.1021/acsmaterialslett.0c00224, Vol.2, No.9, pp.1067-1073, 2020
Abstract:

Liquid-crystal-based biomaterials provide promising platforms for the development of dynamic and responsive interfaces for tissue engineering. Cholesteryl ester liquid crystals (CLCs) are particularly well suited for these applications, due to their roles in cellular homeostasis and their intrinsic ability to organize into supramolecular helicoidal structures on the mesoscale. Here, we developed a nonwoven CLC electrospun scaffold by dispersing three cholesteryl ester-based mesogens within polycaprolactone (PCL). We tuned the ratio of our mesogens so that the CLC would be in the mesophase at the cell culture incubator temperature of 37°C. In these scaffolds, the PCL polymer provided an elastic bulk matrix while the homogeneously dispersed CLC established a viscoelastic fluidlike interface. Atomic force microscopy revealed that the 50% (w/v) cholesteryl ester liquid crystal scaffold (CLC-S) exhibited a mesophase with topographic striations typical of liquid crystals. Additionally, the CLC-S favorable wettability and ultrasoft fiber mechanics enhanced cellular attachment and proliferation. Increasing the CLC concentration within the composites enhanced myoblast adhesion strength promoted myofibril formationin vitrowith mouse myoblast cell lines.

Affiliations:
Nasajpour A.-Massachusetts Institute of Technology (US)
Mostafavi A.-other affiliation
Chlanda A.-Warsaw University of Technology (PL)
Rinoldi C.-other affiliation
Sharifi S.-other affiliation
Ji M.S.-other affiliation
Ye M.-other affiliation
Jonas S.J.-other affiliation
Święszkowski W.-other affiliation
Weiss P.S.-other affiliation
Khademhosseini A.-Massachusetts Institute of Technology (US)
Tamayol A.-Massachusetts Institute of Technology (US)
28.Rinoldi C., Costantini M., Kijeńska-Gawrońska E., Testa S., Fornetti E., Heljak M., Ćwiklińska M., Buda R., Baldi J., Cannata S., Guzowski J., Gargioli C., Khademhosseini A., Święszkowski W., Tendon tissue engineering: effects of mechanical and biochemical stimulation on stem cell alignment on cell‐laden hydrogel yarns, ADVANCED HEALTHCARE MATERIALS, ISSN: 2192-2659, DOI: 10.1002/adhm.201801218, Vol.8, No.7, pp.1801218-1-10, 2019
Abstract:

Fiber-based approaches hold great promise for tendon tissue engineering enabling the possibility of manufacturing aligned hydrogel filaments that can guide collagen fiber orientation, thereby providing a biomimetic micro-environment for cell attachment, orientation, migration, and proliferation. In this study, a 3D system composed of cell-laden, highly aligned hydrogel yarns is designed and obtained via wet spinning in order to reproduce the morphology and structure of tendon fascicles. A bioink composed of alginate and gelatin methacryloyl (GelMA) is optimized for spinning and loaded with human bone morrow mesenchymal stem cells (hBM-MSCs). The produced scaffolds are subjected to mechanical stretching to recapitulate the strains occurring in native tendon tissue. Stem cell differentiation is promoted by addition of bone morphogenetic protein 12 (BMP-12) in the culture medium. The aligned orientation of the fibers combined with mechanical stimulation results in highly preferential longitudinal cell orientation and demonstrates enhanced collagen type I and III expression. Additionally, the combination of biochemical and mechanical stimulations promotes the expression of specific tenogenic markers, signatures of efficient cell differentiation towards tendon. The obtained results suggest that the proposed 3D cell-laden aligned system can be used for engineering of scaffolds for tendon regeneration.

Keywords:

hydrogel fibers, static mechanical stretching, stem cell alignment, tenogenic differentiation, wet spinning

Affiliations:
Rinoldi C.-other affiliation
Costantini M.-Sapienza University of Rome (IT)
Kijeńska-Gawrońska E.-Warsaw University of Technology (PL)
Testa S.-Tor Vergata Rome University (IT)
Fornetti E.-Tor Vergata Rome University (IT)
Heljak M.-Warsaw University of Technology (PL)
Ćwiklińska M.-Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Buda R.-Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Baldi J.-Tor Vergata Rome University (IT)
Cannata S.-Tor Vergata Rome University (IT)
Guzowski J.-Institute of Physical Chemistry, Polish Academy of Sciences (PL)
Gargioli C.-Tor Vergata Rome University (IT)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Święszkowski W.-other affiliation
29.Rinoldi C., Fallahi A., Yazdi I.K., Paras J.C., Kijeńska-Gawrońska E., Trujillo-de Santiago G., Tuoheti A., Demarchi D., Annabi N., Khademhosseini A., Święszkowski W., Tamayol A., Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.8b01647, Vol.5, No.6, pp.2953-2964, 2019
Abstract:

Tendon injuries are frequent and occur in the elderly, young, and athletic populations. The inadequate number of donors combined with many challenges associated with autografts, allografts, xenografts, and prosthetic devices have added to the value of engineering biological substitutes, which can be implanted to repair the damaged tendons. Electrospun scaffolds have the potential to mimic the native tissue structure along with desired mechanical properties and, thus, have attracted noticeable attention. In order to improve the biological responses of these fibrous structures, we designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed constructs can be used for engineering functional tendons.

Keywords:

tendon tissue engineering, composite scaffolds, nanofibrous materials, mechanical stimulation, stem cell differentiation

Affiliations:
Rinoldi C.-other affiliation
Fallahi A.-Paul Scherrer Institut (CH)
Yazdi I.K.-Massachusetts Institute of Technology (US)
Paras J.C.-Massachusetts Institute of Technology (US)
Kijeńska-Gawrońska E.-Warsaw University of Technology (PL)
Trujillo-de Santiago G.-Massachusetts Institute of Technology (US)
Tuoheti A.-Politecnico di Torino (IT)
Demarchi D.-Politecnico di Torino (IT)
Annabi N.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Święszkowski W.-other affiliation
Tamayol A.-Massachusetts Institute of Technology (US)
30.Sardelli L., Pacheco D.P., Zorzetto L., Rinoldi C., Święszkowski W., Petrini P., Engineering biological gradients, Journal of Applied Biomaterials & Functional Materials, ISSN: 2280-8000, DOI: 10.1177/2280800019829023, Vol.17, No.1, pp.2280800019829023-1-15, 2019
Abstract:

Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.

Keywords:

graded scaffolds, rapid prototyping, bioinspired, microfluidic, gradient characterization, cartilage, bone

Affiliations:
Sardelli L.-Politecnico di Milano (IT)
Pacheco D.P.-Politecnico di Milano (IT)
Zorzetto L.-University of Liège (BE)
Rinoldi C.-other affiliation
Święszkowski W.-other affiliation
Petrini P.-Politecnico di Milano (IT)
31.Saghazadeh S., Rinoldi C., Schot M., Kashaf S.S., Sharifi F., Jalilian E., Nuutila K., Giatsidis G., Mostafalu P., Derakhshandeh H., Yue K., Święszkowski W., Memic A., Tamayol A., Khademhosseini A., Drug delivery systems and materials for wound healing applications, Advanced Drug Delivery Reviews, ISSN: 0169-409X, DOI: 10.1016/j.addr.2018.04.008, Vol.127, pp.138-166, 2018
Abstract:

Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted.

Keywords:

Wound healing, Drug delivery, Transdermal delivery, Microtechnologies, Nanotechnologies

Affiliations:
Saghazadeh S.-Massachusetts Institute of Technology (US)
Rinoldi C.-other affiliation
Schot M.-Massachusetts Institute of Technology (US)
Kashaf S.S.-Massachusetts Institute of Technology (US)
Sharifi F.-Massachusetts Institute of Technology (US)
Jalilian E.-Massachusetts Institute of Technology (US)
Nuutila K.-Brigham and Women's Hospital (US)
Giatsidis G.-Brigham and Women's Hospital (US)
Mostafalu P.-Massachusetts Institute of Technology (US)
Derakhshandeh H.-University of Nebraska (US)
Yue K.-Massachusetts Institute of Technology (US)
Święszkowski W.-other affiliation
Memic A.-King Abdulaziz University (SA)
Tamayol A.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
32.Chlanda A., Kijeńska E., Rinoldi C., Tarnowski M., Wierzchoń T., Święszkowski W., Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy, Micron, ISSN: 0968-4328, DOI: 10.1016/j.micron.2018.01.012, Vol.107, pp.79-84, 2018
Abstract:

Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology.

Keywords:

Atomic force microscopy, Surface modification, Electrospun fibers, RF plasma treatment, Tissue engineering, Nanomaterial

Affiliations:
Chlanda A.-Warsaw University of Technology (PL)
Kijeńska E.-Warsaw University of Technology (PL)
Rinoldi C.-other affiliation
Tarnowski M.-Warsaw University of Technology (PL)
Wierzchoń T.-Warsaw University of Technology (PL)
Święszkowski W.-other affiliation
33.Rinoldi C., Kijeńska E., Chlanda A., Choińska E., Khenoussi N., Tamayol A., Khademhosseini A., Święszkowski W., Nanobead-on-string composites for tendon tissue engineering, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/c8tb00246k, Vol.6, No.19, pp.3116-3127, 2018
Abstract:

Tissue engineering holds great potential in the production of functional substitutes to restore, maintain or improve the functionality in defective or lost tissues. So far, a great variety of techniques and approaches for fabrication of scaffolds have been developed and evaluated, allowing researchers to tailor precisely the morphological, chemical and mechanical features of the final constructs. Electrospinning of biocompatible and biodegradable polymers is a popular method for producing homogeneous nanofibrous structures, which might reproduce the nanosized organization of the tendons. Moreover, composite scaffolds obtained by incorporating nanoparticles within electrospun fibers have been lately explored in order to enhance the properties and the functionalities of the pristine polymeric constructs. The present study is focused on the design and fabrication of biocompatible electrospun nanocomposite fibrous scaffolds for tendon regeneration. A mixture of poly(amide 6) and poly(caprolactone) is electrospun to generate constructs with mechanical properties comparable to that of native tendons. To improve the biological activity of the constructs and modify their topography, wettability, stiffness and degradation rate, we incorporated silica particles into the electrospun substrates. The use of nanosize silica particles enables us to form bead-on-fiber topography, allowing the better exposure of ceramic particles to better profit their beneficial characteristics. In vitro biocompatibility studies using L929 fibroblasts demonstrated that the presence of 20 wt% of silica nanoparticles in the engineered scaffolds enhanced cell spreading and proliferation as well as extracellular matrix deposition. The results reveal that the electrospun nanocomposite scaffold represents an interesting candidate for tendon tissue engineering.

Affiliations:
Rinoldi C.-other affiliation
Kijeńska E.-Warsaw University of Technology (PL)
Chlanda A.-Warsaw University of Technology (PL)
Choińska E.-Warsaw University of Technology (PL)
Khenoussi N.-Université de Haute Alsace (FR)
Tamayol A.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Święszkowski W.-other affiliation
34.Nasajpour A., Ansari S., Rinoldi C., Rad A.S., Aghaloo T., Shin S.R., Mishra Y.K., Adelung R., Święszkowski W., Annabi N., Khademhosseini A., Moshaverinia A., Tamayol A., A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics, Advanced Functional Materials, ISSN: 1616-301X, DOI: 10.1002/adfm.201703437, Vol.28, No.3, pp.1703437-1-8, 2017
Abstract:

Periodontitis is a prevalent chronic, destructive inflammatory disease affecting tooth‐supporting tissues in humans. Guided tissue regeneration strategies are widely utilized for periodontal tissue regeneration generally by using a periodontal membrane. The main role of these membranes is to establish a mechanical barrier that prevents the apical migration of the gingival epithelium and hence allowing the growth of periodontal ligament and bone tissue to selectively repopulate the root surface. Currently available membranes have limited bioactivity and regeneration potential. To address such challenges, an osteoconductive, antibacterial, and flexible poly(caprolactone) (PCL) composite membrane containing zinc oxide (ZnO) nanoparticles is developed. The membranes are fabricated through electrospinning of PCL and ZnO particles. The physical properties, mechanical characteristics, and in vitro degradation of the engineered membrane are studied in detail. Also, the osteoconductivity and antibacterial properties of the developed membrane are analyzed in vitro. Moreover, the functionality of the membrane is evaluated with a rat periodontal defect model. The results confirmed that the engineered membrane exerts both osteoconductive and antibacterial properties, demonstrating its great potential for periodontal tissue engineering.

Keywords:

electrospinning, guided tissue regeneration, osteoconductive, periodontal regeneration, zinc oxide

Affiliations:
Nasajpour A.-Massachusetts Institute of Technology (US)
Ansari S.-University of California (US)
Rinoldi C.-other affiliation
Rad A.S.-Massachusetts Institute of Technology (US)
Aghaloo T.-University of California (US)
Shin S.R.-Massachusetts Institute of Technology (US)
Mishra Y.K.-Kiel University (DE)
Adelung R.-Kiel University (DE)
Święszkowski W.-other affiliation
Annabi N.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Moshaverinia A.-University of California (US)
Tamayol A.-Massachusetts Institute of Technology (US)
35.Celikkin N., Rinoldi C., Costantini M., Trombetta M., Rainer A., Święszkowski W., Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications, Materials Science and Engineering C, ISSN: 0928-4931, DOI: 10.1016/j.msec.2017.04.016, Vol.78, pp.1277-1299, 2017
Abstract:

Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.

Keywords:

Natural polymers, Hydrogel scaffolds, Glycosaminoglycans (GAGs), Fibrous proteins, Regenerative medicine

Affiliations:
Celikkin N.-Warsaw University of Technology (PL)
Rinoldi C.-other affiliation
Costantini M.-Sapienza University of Rome (IT)
Trombetta M.-Università Campus Bio-Medico di Roma (IT)
Rainer A.-Università Campus Bio-Medico di Roma (IT)
Święszkowski W.-other affiliation

List of chapters in recent monographs
1.
720
Petronella F., Stoia D., Ziai Y., Zaccagnini F., Scognamiglio V., Maniu D., Rinoldi C., Focsan M., Antonacci A., Pierini F., De Sio L., Novel Optical Materials, rozdział: Chapter 6: Plasmonic-based Biosensors for the Rapid Detection of Harmful Pathogens, World Scientific, 1, pp.155-194, 2023
2.
661
Święszkowski W., Paradiso A., Volpi M., Rinoldi C., Idaszek J., Costantini M., Biofabrication: an integrated bioengineering approach for the automated fabrication of biological structures for clinical and research applications, rozdział: Mimicking nature with biofabrication, Pàtron, pp.31-50, 2021
3.
625
Costantini M., Testa S., Rinoldi C., Celikkin N., Idaszek J., Colosi C., Gargioli C., Święszkowski W., Barbetta A., Biomaterials Science Series, Biofabrication and 3D Tissue Modeling, rozdział: 3D Tissue Modelling of Skeletal Muscle Tissue, Royal Society of Chemistry, Edited by Dong-Woo Cho, 3, pp.184-215, 2019

Conference papers
1.Zargarian S.S., Rinoldi C., Ziai Y., Nakielski P., and Pierini F., DEVELOPMENT OF CONDUCTIVE STIMULI-RESPONSIVE FIBROUS HYDROGELS FOR NEURAL INTERFACES, TERMIS-EU 2022, Tissue Engineering and Regenerative Medicine International Society European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), No.2022, pp.2, 2022

Conference abstracts
1.Rybak D., Rinoldi C., Nakielski P., Pierini F., Stimuli-responsive 3D printed hydrogel composite with drug-releasing short-filaments for infected wound healing, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S4.5-O4, pp.-, 2023
Abstract:

Developing an efficient wound dressing has gained significant attention in the biomedical field, as infected wounds can cause severe complications that negatively impact human health. Creating an optimal environment for wound healing and tissue remodeling is crucial. Hydrogel dressings have become increasingly popular for skin repair due to their oxygen permeability, ability to absorb wound exudate, and moisture retention properties1. Additionally, electrospun materials offer unique properties such as biodegradability and the ability to control drug release, which makes them potential candidates for treating infected wounds2. Electrospinning is a simple method for producing ultrafine fibers that range from nano- to micrometers in diameter. Fibers can be used as drug delivery systems, allowing for controlled and on-demand drug release with the addition of stimuli-responsive particles. The main aim of this study was to develop a multi-functional 3D-printed hydrogel composite for infected wound healing. Ketoprofen-loaded poly(lactic-co-glycolic acid) (PLGA) mat incorporated with gold nanorods (AuNRs) was structured to the short filaments (SFs) using the aminolysis method (Fig. 1A). SFs were loaded into 3d printing ink composed of gelatine-methacrylate (GelMA) and alginate sodium (AS) (Fig. 1B). Introducing photo-responsive AuNRs in SFs significantly accelerated the ketoprofen release under near-infrared (NIR) light exposure. The ketoprofen release of the activated platform by NIR light, compared to the non-irradiated system, exhibited a significant elevation of the drug release resulting from the response to the stimuli (Fig. 1C). The composite dressing also showed excellent photo-thermal performance and good mechanical properties. The stability of the print before and after NIR irradiation was also investigated. Moreover, 3D-printed hydrogel demonstrated antibacterial activity under the NIR laser due to the photo-thermal activity, leading to E. coli eradication after multiple times of exposure. Evaluated tests and achieved results paved the way toward further composite’s ex vivo and in vivo application in the field of infected wounds.

Affiliations:
Rybak D.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
2.Rinoldi C., Haghighat Bayan M.A., Rybak D., Nakielski P., Pierini F., Biocompatible photothermal-responsive plasmonic nanocomposites for near infrared-activated bacterial eradication, ESB 2023, 33st Conference of the European Society for Biomaterials, 2023-09-04/09-08, Davos (CH), No.S6.4-O2, pp.-, 2023
Abstract:

In recent years, novel strategies and approaches to develop antimicrobial biomaterials have attracted increasing attention, targeting multi-functional systems to eliminate bacteria from membranes, surfaces, medical devices, infected sites, contact lenses, etc. More specifically, eradicating bacteria (both resident and exogenous) at the wound site is crucial to guarantee fast and effective wound healing without complications, while sterilization of personal protective equipment (e.g., face masks) makes it possible the safe re-use.[1,2] In this frame, photothermal therapy holds great potential since it can kill pathogenic bacteria with minimal invasiveness.[3]

In this study, plasmonic nanoparticles have been combined with biopolymers to provide the system with bactericide functions. More in detail, plasmonic gold nanorods (AuNRs) are encapsulated into electrospun matrices made of poly(lactic-co-glycolic acid) or polyacrylonitrile by loading into the polymeric solution prior to electrospinning or spraying on the already spun material to obtain the final composites (Figure 1A). The photo-thermal properties of the incorporated AuNRs are exploited to activate the near infrared (NIR)-mediated temperature response upon exposure to NIR light. By reaching a temperature > 55°C, the eradication of 99.5% of bacteria is achieved (Figure 1B), while the stability of the composite materials is maintained. Additionally, in vitro biocompatibility tests performed by culturing fibroblast cells onto the proposed systems show suitable biological properties with no toxic or inflammatory reactions. Taking into account the results, the biocompatible photothermal-responsive nanocomposites reveal their potential in photothermal therapy as a wound dressing and face mask coating.

Affiliations:
Rinoldi C.-IPPT PAN
Haghighat Bayan M.A.-IPPT PAN
Rybak D.-IPPT PAN
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
3.Kosik-Kozioł A., Rybak D., Rinoldi C., Nakielski P., Pierini F., Ferment Oil-Laden Core-Shell Electrospun Nanofibers for Wound Healing Application, Frontiers in Polymer Science 2023 — Seventh International Symposium Frontiers in Polymer Science, 2023-05-30/06-01, Gothenburg (SE), pp.P2.062-P2.062, 2023
Abstract:

Hard-to-heal wounds represent a significant public health problem that often carries a considerable risk of health complications with a negative impact on the quality of a patient's life [1]. The lack of effective treatments for skin damage can be attributed in part to the complexity of a physiological process occurring during the healing and microbial invasion from both resident and exogenous bacteria [2,3]. This research aimed to meet these challenges by developing a multifunctional core-shell nanofiber scaffold releasing the drugs and consisted antimicrobial peptides that hinder bacterial colonization while accelerating the healing process. Core-shell electrospun naofiber systems can control the biomolecule release profile providing sustainable drugs for wound healing. Implemented antimicrobial peptides effectively destroy a large spectrum of pathogens by contact with the cell membrane, decreasing the rate of antibiotic resistance in our healthcare system. The combination of the coaxial system with electrospinning allowed to obtain well-defined fibers. In this study, highly hydrophilic polyvinyl alcohol was confined into water-stable electrospun fibers using optimized polymer blends and cross-linking methods. All employed structures showed ideal morphology, construct's stability over time, and appropriate drug release profile as well as high-cell viability and antimicrobial properties. The developed multifunctional platforms represent a robust and valid candidate for fabricating skin dressings, accelerating the healing of patients' wounds while protecting against bacterial infection.

Keywords:

electrospinning, PVA, Green crosslinking

Affiliations:
Kosik-Kozioł A.-IPPT PAN
Rybak D.-IPPT PAN
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
4.Ziai Y., Petronella F., Rinoldi C., Nakielski P., De Sio L., Pierini F., An AgNPs-incorporated hydrogel-based nanocomposite for lysozyme biosensing, NANOMAT2023, 6th International Conference on Functional Nanomaterials and Nanodevices, 2023-08-27/08-30, Warsaw (PL), No.075, pp.109, 2023
Abstract:

Lysozyme, an enzyme found in various bodily fluids, holds immense importance as a biomolecule with numerous diagnostic implications. In the realm of ophthalmology, lysozyme detection in tears emerges as a precious tool for identifying and addressing dry and inflamed eyes. To enhance the precision and efficiency of lysozyme detection, Smart materials, such as hydrogels and electrospun nanofibers, have been confirmed to be promising candidates for sensing platforms. Plasmonic nanoparticles, on the other hand, offer enhanced optical properties that allow for localized surface plasmon resonance (LSPR), which has been used alongside these substrates. By integrating these smart materials into biosensing platforms, researchers can achieve rapid, reliable, and non-invasive lysozyme detection from tears.
To achieve this goal, a layered platform consisting of a hydrogel layer, electrospun nanofibers, and plasmonic nanoparticles was designed and fabricated. Electrospun mat of poly (L-lactide-co-caprolactone) (PLCL) was used as the support, providing suitable mechanical properties to the platform. Silver nanoplates were immobilized on top of the electrospun nanofibers, where a layer of poly(N-isopropylacrylamide)-based hydrogel was added. With its porous 3D structure and high water content, the hydrogel network allows enhancement in photothermal responsivity. Moreover, due to its fluid nature, the maneuvering of the biomolecules is much easier, making the biosensing procedure more accurate. The structure of each layer, their cross-section, and the whole platform were investigated chemically, morphologically, and optically. The fast photothermal responsitivity of the platform and sensing features were studied, revealing the applicability of the system as a biosensor for detecting lysozyme.

Affiliations:
Ziai Y.-IPPT PAN
Petronella F.-other affiliation
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
De Sio L.-Sapienza University of Rome (IT)
Pierini F.-IPPT PAN
5.Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Urbanek O., Jezierska- Woźniak K., Grodzik M., Maksymowicz W., Pierini F., Injectable microscaffolds for IVD regeneration, 2022 eCM20: Cartilage and Disc Repair and Regeneration, 2022-06-15/06-18, Davos (CH), pp.33-33, 2022
6.Zargarian S.S., Rinoldi C., Ziai Y., Nakielski P., and Pierini F., Development of Conductive Fibrous Hydrogels for Neural Interfaces, 4th INTERDISCIPLINARY FNP CONFERENCE, 2022-10-06/10-07, Warsaw (PL), No.2022, pp.8, 2022
7.Zargarian S.S., Rinoldi C., Ziai Y., Nakielski P., Pierini F., Synthesis and Fabrication of Thermoresponsive Cross-linkable Poly(N-Isopropylacrylamide-Co-Glycidyl Methacrylate), Chemeet, International Chemistry Conference, 2022-06-27/06-29, Madrid, Spain. Hybrid Conference (ES), No.2022, pp.3-4, 2022
Abstract:

Due to their importance in various fields of bio-nanotechnology, the synthesis of thermoresponsive smart polymers has been the focus of recent research. Poly(N-isopropylacrylamide) (PNIPAAm) is a well-known thermal-stimulus responsive polymer that has attracted much attention. For PNIPAAm hydrogels to acquire fast thermo-responsive properties, water molecules must have quick access to the entire material. However, isotropic PNIPAAm-based hydrogels have a slow stimulus-responsivity. Hydrophilic cross-linkable nanostructures are gaining interest as a viable alternative to traditional hydrogels to address this issue. System miniaturization via electrospinning exhibits nanostructures with significantly larger porosity and specific surface area. If the constituting hydrophilic polymer of the electrospun fibrous material were cross-linkable, the resulting would display a rapid hydration/dehydration response. As a result, developing a new class of cross-linkable PNIPAAm copolymers is highly desired.

Affiliations:
Zargarian S.S.-IPPT PAN
Rinoldi C.-IPPT PAN
Ziai Y.-IPPT PAN
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
8.Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds, EHDAES, European Symposium on Electrohydrodynamic Atomization and Electrospinning, 2022-04-27/04-29, Napoli (IT), pp.1, 2022
9.Haghighat Bayan M., Rinoldi C., Nakielski P., Pierini F., Stimuli-responsive face mask-based on electrospun nanofibers, ESB 2022, 32nd Annual Conference of the European Society for Biomaterials, 2022-09-04/09-08, Bordeaux (FR), pp.195, 2022
10.Ziai Y., Rinoldi C., Nakielski P., Kowalewski T.A., Pierini F., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications, TERMIS EU 2022, 2022-06-28/07-01, Krakow (PL), No.PS16.11, pp.1, 2022
11.Nakielski P., Rinoldi C., Pruchniewski M., Rybak D., Jezierska-Woźniak K., Gazińska M., Strojny B., Grodzik M., Maksymowicz W., Pierini F., Injectable nanofibrous microscaffolds for cell and drug delivery, TERMIS-EU 2022, Tissue Engineering and Regenerative Medicine International Society European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), pp.1, 2022
12.Rinoldi C., Ziai Y., Zembrzycki K., Pierini F., CONDUCTIVE HYDROGEL NANOCOMPOSITE-BASED NEURAL INTERFACE FOR IN VIVO RECORDING OF BRAIN CORTEX SIGNALS, TERMIS-EU 2022, Tissue Engineering and Regenerative Medicine International Society European Chapter Conference 2022, 2022-06-28/07-01, Kraków (PL), No.262, pp.1, 2022
13.Rinoldi C., Lanzi M., Fiorelli R., Nakielski P., Zembrzycki K., Kowalewski T.A., Urbanek O., Grippo V., Jezierska-Woźniak K., Maksymowicz W., Camposeo A., Bilewicz R., Pisignano D., Sanai N., Pierini F., Conductive interpenetrating polymer network hydrogel for neural tissue engineering and 3D printing applications, ESB 2021, 31st Annual Conference of the European Society for Biomaterials, 2021-09-05/09-09, Porto (PT), No.PS02-07-224, pp.1691-1692, 2021
14.Zargarian S., Rinoldi C., Ziai Y., Nakielski P., Pierini F., Fabrication of poly (N-isopropylacrylamide-co-glycidyl methacrylate) electrospun hydrogel fibers, NanoInnovation 2021 Conference, 2021-09-21/09-24, Rome (IT), pp.89, 2021
15.Rinoldi C., Pawłowska S., Nakielski P., Ziai Y., Urbanek O., Kowalewski T.A., Pierini F., LIGHT-ASSISTED ELECTROSPINNING OF CORE-SHELL P(NIPAAM-CO-NIPMAAM) HYDROGEL-BASED NANOFIBERS FOR THERMALLY SELF-REGULATED DRUG DELIVERY, TERMIS 6th World Congress, Tissue Engineering and Regenerative Medicine International Society 6th World Congress 2021, 2021-11-15/11-19, Maastricht (NL), No.286, pp.246, 2021
16.Ziai Y., Rinoldi C., Pawłowska S., Nakielski P., Kowalewski T.A., Pierini F., DESIGN AND CHARACTERIZATION OF PHOTORESPONSIVE MULTIFUNCTIONAL HYDROGEL-BASED COMPOSITE PLATFORM, TERMIS 6th World Congress, Tissue Engineering and Regenerative Medicine International Society 6th World Congress 2021, 2021-11-15/11-19, Maastricht (NL), No.506, pp.430, 2021
17.Pierini F., Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., Urbanek-Świderska O., De Sio L., Calogero A., Lanzi M., Zembrzycki K., Pruchniewski M., Salatelli E., Kowalewski T.A., Yarin A., Nature-inspired smart drug delivery platforms based on electrospun nanofibers and plasmonic hydrogels for near-infrared light-controlled polytherapy, Polymer Connect, Polymer Science and Composite Materials Conference, 2020-02-26/02-28, LISBON (PT), pp.7, 2020
18.Rinoldi C., Pawłowska S., Nakielski P., Ziai Y., Urbanek O., Kowalewski T.A., Pierini F., Electrospinning of core-shell cross-linked P(NIPAAm-co-NIPMAAm) for tissue engineering, WBC2020, 11th World Biomaterials Congress, 2020-12-11/12-15, online (GB), No.4190, pp.1, 2020

Patents
Filing No./Date
Filing Publication
Autor(s)
Title
Protection Area, Applicant Name
Patent Number
Date of Grant
pdf
435749
2020-10-21
BUP 17/2022
2022-04-25
Pierini F., Nakielski P., Rinoldi C., Pawłowska S., Ding B., Li X., Si Y.
Nanoplatforma dostarczania leków na żądanie, sposób jej wytwarzania oraz zastosowanie
PL, Instytut Podstawowych Problemów Techniki PAN
-
-
-