Barbara Kupikowska-Stobba, PhD

Department of Biosystems and Soft Matter (ZBiMM)
Division of Modelling in Biology and Medicine (PMBM)
position: Assistant Professor
telephone: (+48) 22 826 12 81 ext.: 161
room: 311
e-mail: bstobba

Doctoral thesis
2019-06-11 A one-step electrostatic method for encapsulation of cells in alginate-polyethersulfone microcapsules  (IBIB PAN)
supervisor -- Dorota Lewińska, IBIB PAN
1465 
Recent publications
1.Kupikowska-Stobba B., Hui N., Iveta K., Ruben A., Jose Manuel L., Kasprzak M., Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats, Food Chemistry, ISSN: 0308-8146, DOI: 10.1016/j.foodchem.2024.142151, Vol.466, pp.142151, 1-30, 2024
2.Kupikowska-Stobba B., Domagała J.Z., Kasprzak M., Critical Review of Techniques for Food Emulsion Characterization, Applied Sciences, ISSN: 2076-3417, DOI: 10.3390/app14031069, Vol.14, No.3, pp.1069--, 2024
3.Zargarian S., Kupikowska-Stobba B., Kosik-Kozioł A., Bartolewska M., Zakrzewska A., Rybak D., Bochenek K., Osial M., Pierini F., Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality, Materials Today Chemistry, ISSN: 2468-5194, DOI: 10.1016/j.mtchem.2024.102281, Vol.41, pp.102281-1-15, 2024
Abstract:

Functional antibacterial textiles fabricated from a hybrid of organic waste-derived and bio-inspired materials offer sustainable solutions for preventing microbial infections. In this work, we developed a novel antibacterial textile created through the valorization of spent coffee grounds (SCG). Electrospinning and electrospraying techniques were employed to integrate the biowaste within a polymeric nanofiber matrix, ensuring uniform particle distribution and providing structural support for enhanced applicability. Modification with polydopamine (PDA) significantly enhanced the textile's photothermal performance. Specific attention was paid to understanding the relation between temperature change and key variables, including the surrounding liquid volume, textile layer stacking, and applied laser power. Developed platforms demonstrated excellent photothermal stability. While the SCG-based textile demonstrated exceptional biocompatibility, the PDA-modified textile effectively eradicated Staphylococcus aureus (S. aureus) under near-infrared (NIR) irradiation. The developed textiles in our work demonstrate a dynamic balance between biocompatibility and on-demand antibacterial functionality, offering adaptable solutions in accordance with the desired application.

Keywords:

Organic waste valorization, Spent coffee grounds, Micro-nanostructured textiles, Bio-inspired photothermal agents, Polydopamine, Antibacterial textiles

Affiliations:
Zargarian S.-IPPT PAN
Kupikowska-Stobba B.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Bartolewska M.-IPPT PAN
Zakrzewska A.-IPPT PAN
Rybak D.-IPPT PAN
Bochenek K.-IPPT PAN
Osial M.-IPPT PAN
Pierini F.-IPPT PAN
4.Szwed-Georgiou A., Płociński P., Kupikowska-Stobba B., Urbaniak Mateusz M., Rusek-Wala P., Szustakiewicz K., Piszko P., Krupa A., Biernat M., Gazińska M., Kasprzak M., Nawrotek K., Pereira Mira N., Rudnicka K., Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.3c00609, Vol.9, No.9, pp.5222-5254, 2023
5.Kupikowska-Stobba B., Kasprzak M., Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology, JOURNAL OF MATERIALS CHEMISTRY B , ISSN: 2050-7518, DOI: 10.1039/d1tb00559f, Vol.9, No.26, pp.5221-5244, 2021
Abstract:

Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.

Affiliations:
Kupikowska-Stobba B.-other affiliation
Kasprzak M.-other affiliation
6.Kupikowska-Stobba B., Grzeczkowicz M., Lewińska D., A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2021.05.003, Vol.41, No.4, pp.1347-1364, 2021
Abstract:

Developing accurate methods for the assessment of therapeutic protein release from polymer drug delivery systems (microcapsules, microspheres, nanoparticles, 3D-printed systems) is of paramount importance for new formulation development. The most straightforward method for protein release assessment is spectrophotometric analysis of the release medium surrounding the formulation. However, direct spectrophotometric analysis is inapplicable to formulations releasing interfering compounds (co-encapsulated drugs, additives) absorbing light in the same spectrum as proteins. Conventional protein release assays also require frequent release medium sampling and replacement, which reduces their accuracy. We propose a one-step method to assess protein release from core/shell microcapsules eliminating the need for sampling and allowing selective real-time protein quantitation in the release medium. To prevent spectral interferences, released protein is differentiated from interfering compounds by employing a colorimetric protein assay reagent, forming a colour complex selectively with the protein, as the release medium. To eliminate sampling, we employed a continuous flow closed loop set-up, where the release medium is constantly circulating between microcapsule-containing tank and spectrophotometer. A series of colorimetric protein assay reagents (bromocresol green, tetrabromophenol blue, eosin B, eosin Y, biuret) were evaluated in terms of their applicability as the release medium in described system. Only biuret reagent was found compatible with proposed method due to formation of color complex stable over extended period of time and low adsorption to microcapsules. Presented method allowed effective evaluation of albumin release from alginate-polyethersulfone microcapsules with accuracy equal to conventional ‘sample and separate’ technique. Albumin release followed first-order kinetics with plateau reached after 19 h.

Keywords:

protein release, core-shell microcapsule, continuous flow apparatus, colorimetric protein assay, mass transfer coefficient, albumin

Affiliations:
Kupikowska-Stobba B.-other affiliation
Grzeczkowicz M.-other affiliation
Lewińska D.-Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
7.Kupikowska-Stobba B., Lewińska D., Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/c9bm01337g, Vol.8, No.6, pp.1536-1574, 2020
Abstract:

Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.

Affiliations:
Kupikowska-Stobba B.-other affiliation
Lewińska D.-Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
8.Dorota Lewińska D., Grzeczkowicz M., Kupikowska-Stobba B., Influence of electric parameters on the alginate-polyethersulfone microcapsule structure, Desalination and Water Treatment, ISSN: 1944-3994, DOI: 10.5004/dwt.2017.11407, Vol.64, pp.400-408, 2017
Abstract:

Alginate-polyethersulfone microcapsules obtained with the one-stage three-nozzle, electrostatic technique designed by our team can successfully be used to encapsulate biologically active material such as functional proteins, microorganisms, bacteria, fungi and mammalian cells. The paper presents the results of studies on the influence of electric parameters on microcapsule size and internal structure. During the manufacturing process, three different liquids, i.e., aqueous sodium alginate solution, separating liquid and membrane-forming solution, were forced through a three-nozzle head, placed in an electrostatic field. After gelling in a gelling bath, the multi-layer drops appearing at the tip of the three-nozzle head formed microcapsules. The electrostatic field was applied through electric impulses with varied values of: voltage (U), frequency (f) and impulse duration (τ). The results indicated, that an increase of all examined electric process parameters resulted in a decrease in average microcapsule diameter and lower uniformity of batches in terms of size. Average membrane thickness (parameter B) did not change significantly, but along with the increase of all electrical parameters, a significant decrease of membrane thickness at the thickest part (parameter N) was observed. The microcapsules that were the most symmetric in regard to membrane thickness were obtained in the series with variable voltage (U).

Keywords:

alginate, microencapsulation of cells, alginate-polyethersulfone microcapsules, electrostatic technique, immobilization

Affiliations:
Dorota Lewińska D.-Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
Grzeczkowicz M.-other affiliation
Kupikowska-Stobba B.-other affiliation
9.Przytulska M., Kulikowski Juliusz L., Lewińska D., Grzeczkowicz M., Kupikowska-Stobba B., Computer-aided image analysis for microcapsules’ quality assessment, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2015.05.005, Vol.35, No.4, pp.342-350, 2015
10.Kupikowska-Stobba B., Lewińska D., Grzeczkowicz M., Chemical method for retrieval of cells encapsulated in alginate-polyethersulfone microcapsules, Artificial Cells, Nanomedicine and Biotechnology, ISSN: 2169-141X, DOI: 10.3109/21691401.2013.800083, Vol.42, No.3, pp.151-160, 2014
11.Lewińska D., Chwojnowski A., Wojciechowski C., Kupikowska-Stobba B., Grzeczkowicz M., Weryński A., Electrostatic droplet generator with 3-coaxial-nozzle head for microencapsulation of living cells in hydrogel covered by synthetic polymer membranes, Separation Science and Technology, ISSN: 1520-5754, DOI: 10.1080/01496395.2011.617350, Vol.47, No.3, pp.463-469, 2012
12.Płończak M., Czubak J., Chwojnowski A., Kupikowska-Stobba B., Culture of human autologous chondrocytes on polysulphonic membrane - preliminary studies, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/s0208-5216(12)70042-6, Vol.32, No.3, pp.63-67, 2012
13.Chwojnowski A., Wojciechowski C., Lewińska D., Łukowska E., Nowak J., Kupikowska-Stobba B., Grzeczkowicz M., Studies on the structure of semipermeable membranes by means of SEM. Problems and potential sources of errors, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/s0208-5216(12)70032-3, Vol.32, No.1, pp.51-64, 2012
14.Kupikowska-Stobba B., Lewińska D., Dudziński K., Jankowska-Śliwińska J., Grzeczkowicz M., Wojciechowski C., Chwojnowski A., Influence of changes in composition of the membrane-forming solution on the structure of alginate-polyethersulfone microcapsules, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, Vol.29, No.3, pp.61-69, 2009
15.Bregier C., Kupikowska-Stobba B., Fabczak H., Fabczak S., CCT chaperonins and their cochaperons, Postępy Biochemii, ISSN: 0032-5422, Vol.54, No.1, pp.64-70, 2008

List of chapters in recent monographs
1.
698
Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., Membranes and membrane processes in environmental protection. Monographs of Environmental Engineering Committee of Polish Academy of Sciences , rozdział: Influence of liquid flow rates on alginate-polyethersulfone microcapsule structure, Environmental Engineering Committee of Polish Academy of Sciences, 118, pp.367-380, 2014
2.
699
Lewińska D., Grzeczkowicz M., Kupikowska-Stobba B., Membrany i procesy membranowe w ochronie środowiska. Monografie Komitetu Inżynierii Środowiska PAN , rozdział: Wpływ wielkości napięcia powierzchniowego cieczy żelującej na budowę membran w mikrokapsułkach glicerynowo-polieterosulfonowych, Komitet Inżynierii Środowiska PAN , 95, pp.93-106, 2012
3.
700
Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., Wojciechowski C., Membrany i procesy membranowe w ochronie środowiska. Monografie Komitetu Inżynierii Środowiska PAN, rozdział: Wpływ parametrów elektrycznych na budowę mikrokapsułek glicerynowo-polieterosulfonowych, Komitet Inżynierii Środowiska PAN, 66, pp.9-22, 2010
4.
701
Chwojnowski A., Wojciechowski C., Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., Dudziński K., Membrany i procesy membranowe w ochronie środowiska. Monografie Komitetu Inżynierii Środowiska PAN, rozdział: Badanie budowy membran półprzepuszczalnych za pomocą SEM. Problemy i potencjalne źródła błędów, Komitet Inżynierii Środowiska PAN, 65, pp.109-120, 2010
5.
702
Kupikowska-Stobba B., Dudziński K., Chwojnowski A., Gutowska M., Sabalińska S., Lewińska D., Płończak M., Czubak J., Membrany i procesy membranowe w ochronie środowiska. Monografie Komitetu Inżynierii Środowiska PAN , rozdział: Wykorzystanie membran półprzepuszczalnych do hodowli chondrocytów króliczych, Komitet Inżynierii Środowiska PAN , 65, pp.341-352, 2010
6.
703
Grzeczkowicz M., Kupikowska-Stobba B., Lewińska D., Membrany i procesy membranowe w ochronie środowiska. Monografie Komitetu Inżynierii Środowiska PAN , rozdział: Opracowanie preparatyki membran mikrokapsułek glicerynowo-polieterosulfonowych do badań mikroskopowych i komputerowej analizy obrazów, Komitet Inżynierii Środowiska PAN , 65, pp.185-197, 2010

Conference papers
1.Grzeczkowicz M., Lewińska D., Kupikowska-Stobba B., Hydrogel-polyethersulfone microcapsules for cell storage, 138th International Centre of Biocybernetics seminar: Advances in Membrane and Adsorber Technology in Life Sciences, 2014-04-06/04-08, Warsaw (PL), pp.35-39, 2014

Conference abstracts
1.Błoński S., Kupikowska-Stobba B., Kurniawan T., Korczyk P.M., Mikroprzepływy jako narzędzie badań w biologii i medycynie, CePT – platformą rozwoju innowacyjnej biomedycyny, 2024-03-08/03-08, Warszawa (PL), pp.1, 2024
2.Korczyk P.M., Kurniawan T., Błoński S., Kupikowska-Stobba B., Integrated Approaches in Microfluidic Design for Enhanced Droplet Manipulation and Biological Insights, FMC 2024, XXVI Fluid Mechanics Conference, 2024-09-10/09-13, Warsaw (PL), pp.92-93, 2024
Abstract:

he Institute of Fundamental Technological Research's Microfluidic Laboratory
is focused on enhancing the accuracy and practical use of microfluidic methods for chemical
and biological studies, as well as creating tailored microfluidic instruments to address
specific biological research needs. In this document, we present a few of our latest projects.

Keywords:

Micro-, Nano- and Bio-flows, Multi-phase Flows, Droplets

Affiliations:
Korczyk P.M.-IPPT PAN
Kurniawan T.-IPPT PAN
Błoński S.-IPPT PAN
Kupikowska-Stobba B.-IPPT PAN
3.Błoński S., Kupikowska-Stobba B., Kurniawan T., Zaremba D., Korczyk P., Developing microfluidic techniques for biochemical and medical applications, 4th INTERDISCIPLINARY FNP CONFERENCE, 2022-10-06/10-07, Warsaw (PL), pp.110, 2022
4.Kupikowska-Stobba B., Grzeczkowicz M., Ładyżyński P., Lewińska D., Influence of surfactant concentration in gelling liquid on size and shape of polyethersulfone microcapsules produced from polymer solutions of different viscosities, XLV ESAO Congress, XLV Congress of the European Society for Artificial Organs, 2018-09-12/09-15, Madrid (ES), pp.600, 2018
5.Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., Wpływ wielkości parametrów elektrycznych na budowę mikrokapsułek alginianowo-polieterosulfonowych, MEMPEP 2016, XI Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2016-06-15/06-18, Zakopane (PL), pp.32, 2016
6.Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., How to determine the concentration of cells encapsulated in alginate-polyethersulfone microcapsules, XLIII ESAO Congress, XLIII Congress of the European Society for Artificial Organs, 2016-09-14/09-17, Warsaw (PL), pp.345, 2016
7.Lewińska D., Kupikowska-Stobba B., Grzeczkowicz M., Influence of liquid flow rates on alginate-polyethersulfone microcapsule structure, MEMPEP 2014, X Scientific Conference Membranes and Membrane Processes in Environmental Protection, 2014-06-06/06-08, Zakopane (PL), pp.380, 2014
8.Lewińska D., Grzeczkowicz M., Kupikowska-Stobba B., Wpływ wielkości napięcia powierzchniowego cieczy żelującej na budowę membran w mikrokapsułkach glicerynowo-polieterosulfonowych, IX Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2012-05-30/06-02, Zakopane (PL), pp.93, 2012
9.Grzeczkowicz M., Kupikowska B., Lewińska D., Elektrostatyczny generator kropel – precyzyjne narzędzie do mikroenkapsulacji komórek i substancji biologicznie aktywnych, KBIB 2010, XVI Krajowa Konferencja Biocybernetyka i Inżynieria Biomedyczna, 2010-04-26/04-29, Warszawa (PL), pp.258, 2010
10.Lewińska D., Kupikowska B., Grzeczkowicz M., Wojciechowski C., Wpływ przepływu cieczy na wielkość i strukturę mikrokapsułek polisacharydowo-polieterosulfonowych, KBIB 2010, XVI Krajowa Konferencja Biocybernetyka i Inżynieria Biomedyczna, 2010-04-26/04-29, Warszawa (PL), pp.144, 2010
11.Kupikowska B., Dudziński K., Jankowska-Śliwińska J., Grzeczkowicz M., Wojciechowski C., Lewińska D., Wpływ składu roztworu membranotwórczego na strukturę membran w mikrokapsułkach alginianowo-polieterosulfonowych, KBIB 2010, XVI Krajowa Konferencja Biocybernetyka i Inżynieria Biomedyczna, 2010-04-26/04-29, Warszawa (PL), pp.257, 2010
12.Kupikowska B., Dudziński K., Chwojnowski A., Gutowska M., Sabalińska S., Lewińska D., Płończak M., Czubak J., Wykorzystanie membran półprzepuszczalnych do hodowli chondrocytów króliczych, MEMPEP 2010, VIII Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2010-06-09/06-12, Zakopane (PL), pp.341, 2010
13.Lewińska D., Kupikowska B., Grzeczkowicz M., Wojciechowski C., Wpływ parametrów elektrycznych na budowę mikrokapsułek glicerynowo-polieterosulfonowych, MEMPEP 2010, VIII Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2010-06-09/06-12, Zakopane (PL), pp.9, 2010
14.Grzeczkowicz M., Kupikowska B., Lewińska D., Opracowanie preparatyki membran mikrokapsułek glicerynowo-polieterosulfonowych do badań mikroskopowych i komputerowej analizy obrazów, MEMPEP 2010, VIII Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2010-06-09/06-12, Zakopane (PL), pp.185, 2010
15.Chwojnowski A., Wojciechowski C., Lewińska D., Kupikowska B., Grzeczkowicz M., Dudziński K., Badanie budowy membran półprzepuszczalnych za pomocą SEM. Problemy i potencjalne źródła błędów, MEMPEP 2010, VIII Krajowa Konferencja Membrany i procesy membranowe w ochronie środowiska, 2010-06-09/06-12, Zakopane (PL), pp.109, 2010

Patents
Filing No./Date
Filing Publication
Autor(s)
Title
Protection Area, Applicant Name
Patent Number
Date of Grant
pdf
402004
2012-12-11
BUP 13/2014
2014-06-23
Lewińska D., Kupikowska-Stobba B., Chwojnowski A., Grzeczkowicz M., Łukowska E.
Sposób oznaczania stężenia komórek
PL, Instytut Biocybernetyki i Inżynierii Biomedycznej PAN
223717
WUP 10/2016
2016-10-31