dr inż. Martyna Pływaczewska


Ostatnie publikacje
1.Bojar W., Kucharska M., Ciach T., Paśnik I., Korobowicz E., Patkowski K., Gruszecki T., Szymanowski M., Rzodkiewicz P., In vivo performance of the experimental chitosan based bone substitute - advanced therapy medicinal product. A study in sheep, Acta Poloniae Pharmaceutica - Drug Research, ISSN: 0001-6837, Vol.73, No.1, pp.209-217, 2016

Streszczenie:

When evaluating a novel bone substitute material, advanced in vivo testing is an important step in development and safety affirmation. Sheep seems to be a valuable model for human one turnover and remodeling activity. The experimental material composed with the stem cells is an advanced therapy medicinal product (acc. to EC Regulation 1394/2007). Our research focuses on histological differences in bone formation (guided bone regeneration n GBR) in sheep maxillas after implantation of the new chitosan / tricalcium phosphate / alginate (CH/TCP/Alg) biomaterial in comparison to the commercially available xenogenic bone graft and a/m enhanced with the stem cells isolated from the adipose tissue. Twelve adult female sheep of BCP synthetic line, weighing 60-70 kg were used for the study. The 11 mm diameter defects in maxilla bone were prepared with a trephine bur under general anesthesia and then filled with the bone substitute materials: CH/TCP/Alg, BioOss Collagen, Geistlich AG (BO), CH/TCP/Alg composed with the stem cells (CH/S) or left just with the blood clot (BC). Inbreeding cycle of the animals terminated at 4 months after surgery. Dissected specimens of the maxilla were evaluated histologically and preliminary under microtomography. Histological evaluation showed early new bone formation observed around the experimental biomaterial and commercially available BO. There were no features of purulent inflammation and necrosis, or granulomatous inflammation. Microscopic examination after 4 months following the surgery revealed trabecular bone formation around chitosan based bone graft and xenogenic material with no significant inflammatory response. Different results – no bone recreation were observed for the negative control (BC). In conclusion, the tested materials (CH/TCP/Alg and BO) showed a high degree of biocompatibility and some osteoconductivity in comparison with the control group. Although the handiness, granules size and setting time of CH/TCP/Alg may be refined for future clinical tests. The relevant beneficial influence of using the adipose derived stem cells in GBR was not confirmed in this model.

Słowa kluczowe:

alginate, bone substitute material, chitosan, guided bone regeneration, β-tricalcium phosphate, sheep model, stem cells

Afiliacje autorów:

Bojar W.-National Medicines Institute (PL)
Kucharska M.-other affiliation
Ciach T.-Politechnika Warszawska (PL)
Paśnik I.-other affiliation
Korobowicz E.-other affiliation
Patkowski K.-other affiliation
Gruszecki T.-University of Life Sciences in Lublin (PL)
Szymanowski M.-other affiliation
Rzodkiewicz P.-other affiliation
15p.
2.Kucharska M., Walenko K., Lewandowska-Szumieł M., Brynk T., Jaroszewicz J., Ciach T., Chitosan and composite microsphere-based scaffold for bone tissue engineering: evaluation of tricalcium phosphate content influence on physical and biological properties, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10856-015-5464-9, Vol.26, No.143, pp.1-12, 2015

Streszczenie:

In the hereby presented work the authors describe a technique of high-compression-resistant biodegradable bone scaffold preparation. The methodology is based on the agglomeration of chitosan (CH) and chitosan/β-tricalcium phosphate (CH/TCP) microspheres and represents a novel approach to 3D matrices design for bone tissue engineering application. The materials were prepared from high deacetylation degree chitosan. The authors describe the method for scaffold fabrication, essential properties of the materials manufactured and the influence of various TCP concentrations on material morphology, mechanical properties (for dry and hydrated materials) and preliminary study on the interaction between CH or CH/TCP scaffolds and within cultured MG-63 osteoblast-like cells. The properties of the obtained materials were significantly affected by the calcium phosphate content, which had a particular influence on the granule microstructure, size distribution and inner biomaterial pore size. The water uptake ability was found to be lower for the materials enriched with the inorganic phase and tended to decrease with the increasing calcium phosphate concentration. The evaluation of mechanical properties has revealed that scaffolds produced with the usage of granule-based technology display a potential to be used as a load-bearing material since the Young’s modulus values were limited to the range of 200–500 MPa for dry materials and 15–20 MPa for the hydrated state of the scaffolds. The cell number, identified in three time points (48 h, 7 and 14 days) by Pico Green assay, was lower for the materials enriched with inorganic phase (75 % of control), however cell distribution, when compared to CH only biomaterial, was acknowledged as steadier on the surface of the material containing the highest calcium phosphate concentration.

Afiliacje autorów:

Kucharska M.-other affiliation
Walenko K.-other affiliation
Lewandowska-Szumieł M.-other affiliation
Brynk T.-Politechnika Warszawska (PL)
Jaroszewicz J.-other affiliation
Ciach T.-Politechnika Warszawska (PL)
30p.
3.Bojar W., Kucharska M., Ciach T., Koperski Ł., Jastrzębski Z., Szałwiński M., Bone regeneration potential of the new chitosan-based alloplastic biomaterial, JOURNAL OF BIOMATERIALS APPLICATIONS, ISSN: 0885-3282, DOI: 10.1177/0885328213493682, Vol.28, No.7, pp.1060-1068, 2014

Streszczenie:

Over the last few years, alloplastic bone substitute materials are raising much interest as an alternative to autologic transplants and xenogenic materials especially in oral surgery. These non-immunogenic and completely resorbable biomaterials are becoming the basis for complete and predictable guided bone regeneration in many cases. The objective of our research was to evaluate the dynamics of bone formation in rats’ skulls after implantation of the new chitosan/tricalcium phosphate/alginate biomaterial in comparison to the commercially available alloplastic bone graft. A total of 45 adult male rats weighing 300–400 g were used for the study. The 85-mm-diameter defects in calvaria bone were prepared with a trephine bur, and then filled with the bone substitute materials: chitosan/tricalcium phosphate/alginate or easy-graft Classic (Degradable Solutions AG) (EA) or left just with the blood clot. Animals were sacrificed at 1 and 3 months for histological, histomorphometrical and micro-tomographic evaluations. Histological evaluation at 1 month showed early new bone formation, observed around the experimental biomaterial (CH/TCP/Alg). There were no features of purulent inflammation and necrosis or granulomatous inflammation. Microscopic examination after 3 months following the surgery revealed trabecular bone formation around chitosan-based bone graft with no significant inflammatory response. Less satisfactory and differing results were observed for the commercially available EA and control blood clot. The tested material (chitosan) showed a high degree of biocompatibility and osteoconductivity in comparison with the control groups. Additionally, it seemed to be a “user-friendly” material for oral surgeons.

Słowa kluczowe:

Alginate, bone substitute material, chitosan, guided bone regeneration, β-tricalcium phosphate, rat model

Afiliacje autorów:

Bojar W.-National Medicines Institute (PL)
Kucharska M.-other affiliation
Ciach T.-Politechnika Warszawska (PL)
Koperski Ł.-other affiliation
Jastrzębski Z.-other affiliation
Szałwiński M.-other affiliation
30p.

Abstrakty konferencyjne
1.Urbanek O., Kucharska M., Dulnik J., Kołbuk D., Bicomponent nanofibers in tissue engineering, Szkoła Zimowa, 2014-12-15/12-16, Warszawa (PL), pp.30, 2014

Streszczenie:

Bicomponent poly(caprolactone)/ chitosan (PCL/Chit) nanofibers are a promising alternative for cartilage tissue regeneration. Chitosan is characterized by high structural similarity to the glycosaminoglycans (GAG) which naturally occur in the extracellular matrix (ECM). Its hydrophilicity is beneficial for cells adhesion and proliferation [1]. The amino groups in chitosan are responsible for the formation of polycations, which subsequently form compounds with natural and synthetic anions (proteins, lipids, synthetic polymers which are negatively charged) [2, 3]. Electrospinning of polycations with positive charge on the needle, is difficult due to the instability of the stream resulting from large repulsion force in the polymer jet [3]. Introduction of synthetic polymer molecules to the solution decreases interactions between the chains of chitosan and reduces the viscosity of the solution, so they are easier to form by electrospinning, as well as with negative charge on the needle [4 ]. A synthetic polymer, which is poly(caprolactone), improves mechanical properties of the fibers and the time of the hydrolytic degradation of the scaffold [4]. Nanofibers are excellent material for cell scaffolds used in tissue engineering because of high similarity of their morphology to native extracellular matrix (ECM) [1, 2]. From the viewpoint of cartilage tissue regeneration scaffold in the form of nanofibers is particularly justified due to naturally occurring network of polymer fibers (proteins and glycosaminoglycans) called aggrecans, in ECM of cartilage. Chondrocytes are connected with aggrecans [4]. Both, the structure and composition of formed nanofibers may affect the time in which cells will reach their proper morphology and undertake its functions [4]. In order to study cell behavior on electrospun PCL/chitosan nonwoven, fibroblasts L929 were cultured. Actin Green staining was conducted in order to imagine actin cytoskeleton of fibroblasts. To characterize, both fibers structure and cell morphology, SEM imagining was done. AFM imaging was carried to describe fibers topography and phase distribution. Also conductivity and viscosity of the PCL/chitosan solution with various polymer ratio was measured.

Słowa kluczowe:

electrospinninig, scaffolds, PCL, chitozan, cellular responce

Afiliacje autorów:

Urbanek O.-IPPT PAN
Kucharska M.-IPPT PAN
Dulnik J.-IPPT PAN
Kołbuk D.-IPPT PAN