mgr inż. Katarzyna Zielińska

Zakład Mechaniki Doświadczalnej (ZMD)
Pracownia Technologicznych Zastosowań Laserów (PTZL)
stanowisko: laborant
telefon: (+48) 22 826 12 81 wew.: 236
pokój: 034
e-mail: kzielin

Ostatnie publikacje
1.Tabin J., Ślęzak T., Zielińska K., Kukla D., Ortwein R., Sarasola X., Grzelak K., Microstructure, mechanical properties and residual stress of welded stainless-steel jackets for React & Wind conductor in EU-DEMO, Fusion Engineering and Design, ISSN: 0920-3796, DOI: 10.1016/j.fusengdes.2025.115503, Vol.222, No.115503, pp.1-11, 2026

Streszczenie:

Within the framework of the EuroFusion WPMAG project, an automatic laser-welding line was constructed to produce a 1 km long, empty stainless steel jacket demonstrator for the React & Wind (RW) conductor for EU-DEMO. Four 500 m long C-profiles made of 316 L austenitic stainless steel were fabricated from ∼8 m long sections using the manual TIG (Tungsten Inert Gas) welding method. A series of experimental investigations was carried out on the welded samples, including ferrite content measurements, microhardness tests, residual stress measurements, and shape deviation assessments. The results revealed that part of the austenitic structure transformed into ferromagnetic phase—ferrite—around the heat affected zone (HAZ), with up to 7% ferrite observed in the laser welds and up to 10% in the TIG welds. Due to the relative magnetic permeability of ferrite (μᵣ > 1), electromagnetic (EM) forces will be present in that region of the jacket during magnet operation.
The microhardness measurements revealed an increased hardness in the welded region—up to 40.6%—due to material hardening and the presence of harder ferrite in the microstructure. Residual stresses were measured using the hole-drilling technique for both TIG and laser welds, revealing mostly compressive stresses in the TIG welds and tensile stresses in the laser welds. Considerable compressive stresses were introduced into the TIG welds during grinding. To assess the equivalent residual stress, a method of approximating the lower bound of the von Mises residual stress was proposed, revealing increasing values with the depth up to 1 mm, exceeding the initial yield stress at depths greater than 0.5 mm and reaching up to 425 MPa.
The shape deviations around the TIG weld reached 0.41 mm, with deformations toward the centre of the wide side of the jacket, resulting in a concave shape. Such deviations are considerable and could impact subsequent assembly steps of the superconducting Cable-In-Conduit Conductor (CICC).
This study presents a procedure for evaluating weld quality in conductor jackets, focusing on residual stresses, phase transformations, and welding-induced property changes.

Słowa kluczowe:

Welded jacket, Residual stresses, RW conductor, EU-DEMO

Afiliacje autorów:

Tabin J.-IPPT PAN
Ślęzak T.-other affiliation
Zielińska K.-IPPT PAN
Kukla D.-IPPT PAN
Ortwein R.-CERN (CH)
Sarasola X.-other affiliation
Grzelak K.-other affiliation
100p.
2.Borowski T., Zielińska K., Spychalski M., Adamczyk-Cieślak B., Żrodowski Ł., Effect of oxidation temperature on the properties of niobium in view of its biomedical applications, SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2023.129911, Vol.473, No.129911, pp.1-11, 2023

Streszczenie:

Four-hour oxidation processes of niobium in an air atmosphere at temperatures of 400 °C, 425 °C, 450 °C and 500 °C were carried out. In order to characterise the layers produced, the cross-sectional microstructure, chemical and phase composition as well as surface roughness were examined. The mechanical properties of the surface were determined by performing Vickers microhardness tests. In order to verify the properties from a biological point of view, contact angle analysis and corrosion tests in Ringer's solution were carried out. The results revealed the formation of layers composed of a solid solution of oxygen in niobium Nb(O) at oxidation temperatures of 400 °C, a solution of Nb(O) and niobium pentoxide Nb2O5 at 425 °C, and Nb2O5 at 450 °C and 500 °C. Increased oxidation temperature resulted in an increase in hardness and surface roughness, and each process contributed to improved corrosion resistance. Oxidation at too high temperature (≥450 °C) caused degradation of the material's surface due to niobium's low heat resistance. At 450 °C the first cracks in the material were visible, and at 500 °C the layer was inhomogeneous, brittle and underwent significant chipping. The highest hardness, roughness and hydrophobic properties were shown by niobium oxidised at 500 °C, which underwent surface degradation at this temperature. In turn, niobium oxidised at 400 °C and 425 °C showed outstanding properties in the biological aspect, achieving both high hydrophilicity and the highest corrosion resistance.

Słowa kluczowe:

Niobium, Oxidation, Microstructure, Corrosion, Contact angle, Surface engineering

Afiliacje autorów:

Borowski T.-other affiliation
Zielińska K.-other affiliation
Spychalski M.-other affiliation
Adamczyk-Cieślak B.-other affiliation
Żrodowski Ł.-other affiliation
100p.

Abstrakty konferencyjne
1.Zielińska K., Mościcki T., Comparison of wear resistance and biological properties of Ag/W1-xTixB2,5 nanocomposite and pure-silver coating, 4th Coatings and Interfaces Online Conference, 2025-05-21/05-23, Zurich (CH), pp.1-1, 2025

Słowa kluczowe:

HiPIMS magnetron sputtering, pulsed laser deposition, nanocomposite, transition metal borides, silver

Afiliacje autorów:

Zielińska K.-IPPT PAN
Mościcki T.-IPPT PAN