Tabela A z publikacjami w czasopismach wyróżnionych w Journal Citation Reports (JCR) 
Tabela B z publikacjami w czasopismach zagranicznych i krajowych, wyróżnionych na liście MNSzW
Publikacje konferencyjne indeksowane w bazie Web of Science Core Collection
Inne publikacje w pozostałych czasopismach i wydawnictwach konferencyjnych
Afiliacja IPPT PAN

1.Tauzowski P., Błachowski B., Lógó J., Optimal topologies considering fatigue with reliability constraint, Advances in Engineering Software, ISSN: 0965-9978, DOI: 10.1016/j.advengsoft.2023.103590, Vol.189, pp.1-12, 2024
Tauzowski P., Błachowski B., Lógó J., Optimal topologies considering fatigue with reliability constraint, Advances in Engineering Software, ISSN: 0965-9978, DOI: 10.1016/j.advengsoft.2023.103590, Vol.189, pp.1-12, 2024

Abstract:
This paper addresses a challenging engineering problem that combines stress-limited topology optimization, reliability analysis, and plasticity-based low-cycle fatigue. Each of these issues represents a complex problem on its own, necessitating significant computational effort. In this study, we propose a novel approach that integrates safety assessment into the topology optimization process while considering the number of cycles for low-cycle fatigue. Our method employs a linear approximation of the performance function for safety control, incorporating the number of failure cycles within a complex, multi-level load program. The methodology is validated through real experiments, using a finite element model with cubic shape functions that yield nearly identical results between numerical and experimental outcomes in the case of fatigue-resistant design for a bi-axially tensioned structural joint.

Keywords:
Topology optimization, stress constraints, Reliability analysis, low-cycle fatigue, fatigueplasticity

(140p.)
2.Kaszyca K., Marcin C., Bucholc B., Błyskun P., Nisar F., Rojek J., Zybała R., Using the Spark Plasma Sintering System for Fabrication of Advanced Semiconductor Materials , Materials, ISSN: 1996-1944, DOI: 10.3390/ma17061422, Vol.17, No.1422, pp.1-15, 2024
Kaszyca K., Marcin C., Bucholc B., Błyskun P., Nisar F., Rojek J., Zybała R., Using the Spark Plasma Sintering System for Fabrication of Advanced Semiconductor Materials , Materials, ISSN: 1996-1944, DOI: 10.3390/ma17061422, Vol.17, No.1422, pp.1-15, 2024

Abstract:
The interest in the Spark Plasma Sintering (SPS) technique has continuously increased over the last few years. This article shows the possibility of the development of an SPS device used for material processing and synthesis in both scientific and industrial applications and aims to present manufacturing methods and the versatility of an SPS device, presenting examples of processing Arc-Melted- (half-Heusler, cobalt triantimonide) and Self-propagating High-temperature Synthesis (SHS)-synthesized semiconductor (bismuth telluride) materials. The SPS system functionality development is presented, the purpose of which was to broaden the knowledge of the nature of SPS processes. This approach enabled the precise design of material sintering processes and also contributed to increasing the repeatability and accuracy of sintering conditions.

Keywords:
spark plasma sintering, arc melting, semiconductor materials, half-Heusler, bismuth telluride, cobalt triantimonide, SHS, SPS

(140p.)
3.Barros G., Andre P., Rojek J., Carter J., Thoeni K., Time domain coupling of the boundary and discrete element methods for 3D problems, COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-024-02455-7, pp.1-19, 2024
Barros G., Andre P., Rojek J., Carter J., Thoeni K., Time domain coupling of the boundary and discrete element methods for 3D problems, COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-024-02455-7, pp.1-19, 2024

Abstract:
This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling complex and realistic problems in various scientific and engineering domains.

Keywords:
Interface coupling, Concurrent multi-scale coupling, Boundary element method (BEM), Discrete element method (DEM) , Staggered time integration, Dynamic wave propagation, Infinite domain

(140p.)
4.Maździarz M., Nosewicz S., Atomistic investigation of deformation and fracture of individual structural components of metal matrix composites, ENGINEERING FRACTURE MECHANICS, ISSN: 0013-7944, DOI: 10.1016/j.engfracmech.2024.109953, Vol.298, pp.109953-1-109953-21, 2024
Maździarz M., Nosewicz S., Atomistic investigation of deformation and fracture of individual structural components of metal matrix composites, ENGINEERING FRACTURE MECHANICS, ISSN: 0013-7944, DOI: 10.1016/j.engfracmech.2024.109953, Vol.298, pp.109953-1-109953-21, 2024

Abstract:
This paper focuses on the development of the atomistic framework for determining the lower scale mechanical parameters of single components of a metal matrix composite for final application to a micromechanical damage model. Here, the deformation and failure behavior of NiAl–Al2O3 interfaces and their components, metal and ceramic, are analyzed in depth using molecular statics calculations. A number of atomistic simulations of strength tests, uniaxial tensile, uniaxial compressive and simple shear, have been performed in order to obtain a set of stiffness tensors and strain–stress characteristics up to failure for 30 different crystalline and amorphous systems. Characteristic points on the strain–stress curves in the vicinity of failure are further analyzed at the atomistic level, using local measures of lattice disorder. Numerical results are discussed in the context of composite damage at upper microscopic scale based on images of the fracture surface of NiAl–Al2O3 composites.

Keywords:
Metal-matrix composites (MMCs), Fracture, Computational modeling, Mechanical testing, Molecular statics

(140p.)
5.Naseri M., Macchiavello C., Bruß D., Horodecki P., Streltsov A., Quantum speed limits for change of basis, NEW JOURNAL OF PHYSICS, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ad25a5, Vol.26, pp.023052-023052, 2024(140p.)
6.Fathalian M., Postek E. W., Tahani M., Sadowski T., A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics, Molecules, ISSN: 1420-3049, DOI: 10.3390/molecules29051165, Vol.29, pp.1165-1165-18, 2024
Fathalian M., Postek E. W., Tahani M., Sadowski T., A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics, Molecules, ISSN: 1420-3049, DOI: 10.3390/molecules29051165, Vol.29, pp.1165-1165-18, 2024

Abstract:
This study comprehensively investigates Al2O3’s mechanical properties, focusing on fracture toughness, surface energy, Young’s modulus, and crack propagation. The density functional
theory (DFT) is employed to model the vacancies in Al2O3, providing essential insights into this material’s structural stability and defect formation. The DFT simulations reveal a deep understanding of vacancy-related properties and their impact on mechanical behavior. In conjunction with molecular dynamics (MD) simulations, the fracture toughness and crack propagation in Al2O3 are explored, offering valuable information on material strength and durability. The surface energy of Al2O3 is also assessed using DFT, shedding light on its interactions with the surrounding environment.
The results of this investigation highlight the significant impact of oxygen vacancies on mechanical characteristics such as ultimate strength and fracture toughness, drawing comparisons with the effects observed in the presence of aluminum vacancies. Additionally, the research underscores the validation of fracture toughness outcomes derived from both DFT and MD simulations, which align well with findings from established experimental studies. Additionally, the research underscores the validation of fracture toughness outcomes derived from DFT and MD simulations, aligning well with findings from established experimental studies. The combination of DFT and MD simulations provides a robust framework for a comprehensive understanding of Al2O3’s mechanical properties, with implications for material science and engineering applications.

Keywords:
Al2O3, fracture toughness, density functional theory, molecular dynamics

(140p.)
7.Nisar F., Rojek J., Nosewicz S., Kaszyca K., Chmielewski M., Evaluation of effective thermal conductivity of sintered porous materials using an improved discrete element model, POWDER TECHNOLOGY, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2024.119546, Vol.437, pp.119546- , 2024
Nisar F., Rojek J., Nosewicz S., Kaszyca K., Chmielewski M., Evaluation of effective thermal conductivity of sintered porous materials using an improved discrete element model, POWDER TECHNOLOGY, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2024.119546, Vol.437, pp.119546- , 2024

Abstract:
This work aims to revise and apply an original discrete element model (DEM) to evaluate effective thermal conductivity of sintered porous materials. The model, based on two-particle sintering geometry, calculates inter-particle neck using Constant Volume (CV) criterion. The model was validated using experimental measurements on sintered porous NiAl. For DEM simulations, heterogeneous samples with real particle size distribution and different densities were obtained by simulation of hot pressing. Neck size evaluated using Coble’s and CV models were compared to show that commonly used Coble’s model overestimates neck size and conductivity. The proposed model was improved by neck-size correction to compensate for non-physical overlaps at higher densities and by adding grain-boundary resistance to account for porosity within necks. Resistance contribution from grain boundaries was shown to decrease with increasing density. Thermal conductivity obtained from the improved model was close to experimental results, suggesting validity of the model.

Keywords:
Discrete element method,Effective thermal conductivity,Porous materials,Sintering,Heat conduction simulation

(140p.)
8.Rudnicka Z., Pręgowska A., Glądys K., Perkins M., Proniewska K., Advancements in artificial intelligence-driven techniques for interventional cardiology, Cardiology Journal, ISSN: 1897-5593, DOI: 10.5603/cj.98650, pp.1-31, 2024
Rudnicka Z., Pręgowska A., Glądys K., Perkins M., Proniewska K., Advancements in artificial intelligence-driven techniques for interventional cardiology, Cardiology Journal, ISSN: 1897-5593, DOI: 10.5603/cj.98650, pp.1-31, 2024

Abstract:
This paper aims to thoroughly discuss the impact of artificial intelligence (AI) on clinical practice in interventional cardiology (IC) with special recognition of its most recent advancements. Thus, recent years have been exceptionally abundant in advancements in computational tools, including the development of AI. The application of AI development is currently in its early stages, nevertheless new technologies have proven to be a promising concept, particularly considering IC showing great impact on patient safety, risk stratification and outcomes during the whole therapeutic process. The primary goal is to achieve the integration of multiple cardiac imaging modalities, establish online decision support systems and platforms based on augmented and/or virtual realities, and finally to create automatic medical systems, providing electronic health data on patients. In a simplified way, two main areas of AI utilization in IC may be distinguished, namely, virtual and physical. Consequently, numerous studies have provided data regarding AI utilization in terms of automated interpretation and analysis from various cardiac modalities, including electrocardiogram, echocardiography, angiography, cardiac magnetic resonance imaging, and computed tomography as well as data collected during robotic-assisted percutaneous coronary intervention procedures. Thus, this paper aims to thoroughly discuss the impact of AI on clinical practice in IC with special recognition of its most recent advancements.

Keywords:
artificial intelligence (AI), interventional cardiology (IC), cardiac modalities, augmented and/or virtual realities, automatic medical systems

(100p.)
9.Rudnicka Z., Szczepański J., Pręgowska A., Artificial Intelligence-Based Algorithms in Medical Image Scan Segmentation and Intelligent Visual Content Generation—A Concise Overview, Electronics , ISSN: 2079-9292, DOI: 10.3390/electronics13040746, Vol.13, No.4, pp.1-35, 2024
Rudnicka Z., Szczepański J., Pręgowska A., Artificial Intelligence-Based Algorithms in Medical Image Scan Segmentation and Intelligent Visual Content Generation—A Concise Overview, Electronics , ISSN: 2079-9292, DOI: 10.3390/electronics13040746, Vol.13, No.4, pp.1-35, 2024

Abstract:
Recently, artificial intelligence (AI)-based algorithms have revolutionized the medical image segmentation processes. Thus, the precise segmentation of organs and their lesions may contribute to an efficient diagnostics process and a more effective selection of targeted therapies, as well as increasing the effectiveness of the training process. In this context, AI may contribute to the automatization of the image scan segmentation process and increase the quality of the resulting 3D objects, which may lead to the generation of more realistic virtual objects. In this paper, we focus on the AI-based solutions applied in medical image scan segmentation and intelligent visual content generation, i.e., computer-generated three-dimensional (3D) images in the context of extended reality (XR). We consider different types of neural networks used with a special emphasis on the learning rules applied, taking into account algorithm accuracy and performance, as well as open data availability. This paper attempts to summarize the current development of AI-based segmentation methods in medical imaging and intelligent visual content generation that are applied in XR. It concludes with possible developments and open challenges in AI applications in extended reality-based solutions. Finally, future lines of research and development directions of artificial intelligence applications, both in medical image segmentation and extended reality-based medical solutions, are discussed.

Keywords:
artificial intelligence, extended reality, medical image scan segmentation

(100p.)
10.Rudnicka Z., Proniewska K., Perkins M., Pręgowska A., Cardiac Healthcare Digital Twins Supported by Artificial Intelligence-Based Algorithms and Extended Reality—A Systematic Review , Electronics , ISSN: 2079-9292, DOI: 10.3390/electronics13050866, Vol.13, No.5, pp.1-35, 2024
Rudnicka Z., Proniewska K., Perkins M., Pręgowska A., Cardiac Healthcare Digital Twins Supported by Artificial Intelligence-Based Algorithms and Extended Reality—A Systematic Review , Electronics , ISSN: 2079-9292, DOI: 10.3390/electronics13050866, Vol.13, No.5, pp.1-35, 2024

Abstract:
Recently, significant efforts have been made to create Health Digital Twins (HDTs), Digital Twins for clinical applications. Heart modeling is one of the fastest-growing fields, which favors the effective application of HDTs. The clinical application of HDTs will be increasingly widespread in the future of healthcare services and has huge potential to form part of mainstream medicine. However, it requires the development of both models and algorithms for the analysis of medical data, and advances in Artificial Intelligence (AI)-based algorithms have already revolutionized image segmentation processes. Precise segmentation of lesions may contribute to an efficient diagnostics process and a more effective selection of targeted therapy. In this systematic review, a brief overview of recent achievements in HDT technologies in the field of cardiology, including interventional cardiology, was conducted. HDTs were studied taking into account the application of Extended Reality (XR) and AI, as well as data security, technical risks, and ethics-related issues. Special emphasis was put on automatic segmentation issues. In this study, 253 literature sources were taken into account. It appears that improvements in data processing will focus on automatic segmentation of medical imaging in addition to three-dimensional (3D) pictures to reconstruct the anatomy of the heart and torso that can be displayed in XR-based devices. This will contribute to the development of effective heart diagnostics. The combination of AI, XR, and an HDT-based solution will help to avoid technical errors and serve as a universal methodology in the development of personalized cardiology. Additionally, we describe potential applications, limitations, and further research directions.

Keywords:
Artificial Intelligence,Machine Learning,Metaverse,Virtual Reality,Extended Reality,Augmented Reality,Digital Twin,Health Digital Twin,personalized medicine,cardiology

(100p.)
11.Miller M., Scalici M., Fellous-Asiani M., Streltsov A., Power of noisy quantum states and the advantage of resource dilution, Physical Review A, ISSN: 2469-9926, Vol.109, pp.022404-022404, 2024(100p.)
12.Paprocki B., Pręgowska A., Szczepański J., Does Adding of Neurons to the Network Layer Lead to Increased Transmission Efficiency?, IEEE Access, ISSN: 2169-3536, DOI: 10.1109/ACCESS.2024.3379324, Vol.12, pp. 42701-42709, 2024
Paprocki B., Pręgowska A., Szczepański J., Does Adding of Neurons to the Network Layer Lead to Increased Transmission Efficiency?, IEEE Access, ISSN: 2169-3536, DOI: 10.1109/ACCESS.2024.3379324, Vol.12, pp. 42701-42709, 2024

Abstract:
The aim of this study is to contribute to the important question in Neuroscience of whether the number of neurons in a given layer of a network affects transmission efficiency. Mutual Information, as defined by Shannon, between the input and output signals for certain classes of networks is analyzed theoretically and numerically. A Levy-Baxter probabilistic neural model is applied. This model includes all important qualitative mechanisms involved in the transmission process in the brain. We derived analytical formulas for the Mutual Information of input signals coming from Information Sources as Bernoulli processes. These formulas depend on the parameters of the Information Source, neurons and network. Numerical simulations were performed using these equations. It turned out, that the Mutual Information starting from a certain value increased very slowly with the number of neurons being added. The increase is of the rate m_{−c} where m is the number of neurons in the transmission layer, and c is very small. The calculations also show that for a practical number (up to 15000) of neurons, the Mutual Information reaches only approximately half of the information that is carried out by the input signal. The influence of noise on the transmission efficiency depending on the number of neurons was also analyzed. It turned out that the noise level at which transmission is optimal increases significantly with this number. Our results indicate that a large number of neurons in the network does not mean an essential improvement in transmission efficiency, but can contribute to reliability.

Keywords:
Shannon communication theory,neural network,network layer,transmission efficiency,mutual information,model of neuron,spike trains,information source,entropy

(100p.)
13.Zabojszcza P., Radoń U., Tauzowski P., Robust Optimization of the Steel Single Story Frame, Acta Polytechnica Hungarica, ISSN: 1785-8860, DOI: 10.12700/APH.21.1.2024.1.2, Vol.21, No.1, pp.9-29, 2024
Zabojszcza P., Radoń U., Tauzowski P., Robust Optimization of the Steel Single Story Frame, Acta Polytechnica Hungarica, ISSN: 1785-8860, DOI: 10.12700/APH.21.1.2024.1.2, Vol.21, No.1, pp.9-29, 2024

Abstract:
In contemporary design practices, building structures are expected to not only meet safety requirements but also be optimized. However, optimal designs can be highly sensitive to random variations in model parameters and external actions. Solutions that appear effective under nominal conditions may prove inadequate when parameter randomness is considered. To address this challenge, the concept of robust optimization has been introduced, which extends deterministic optimization formulations to incorporate the random variability of parameter values. In this study, we demonstrate the applicability of robust optimization in the design of building structures using a simple orthogonal frame as an example. The static-strength analysis is conducted based on the displacement method, utilizing second-order theory. To assess the safety level of the steel frame, a preliminary evaluation is performed by determining the reliability index and failure probability using the Monte Carlo Method. Robust optimization is then employed, leveraging the second-order response surface. Experimental designs are generated following an optimal Latin hypercube plan. The proposal of a mathematical-numerical algorithm for solving the optimization problem while considering the random nature of design parameters constitutes the innovative aspect of this research.

Keywords:
reliability, robust optimization, second order theory, displacement method

(70p.)