Partner: Jarosław Mizera |
|
Recent publications
1. | Maj P.♦, Bochenek K., Sitek R.♦, Koralnik M.♦, Jonak K.♦, Wieczorek M.♦, Pakieła Z.♦, Mizera J.♦, Comparison of mechanical properties and structure of Haynes 282 consolidated via two different powder metallurgy methods: laser powder bed fusion and hot pressing, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1007/s43452-023-00674-y, Vol.23, No.130, pp.1-11, 2023 Abstract: The development of powder metallurgy methods in recent years has caused traditional casting methods to be replaced in many industrial applications. Using such methods, it is possible to obtain parts having the required geometry after a process that saves both manufacturing costs and time. However, there are many material issues that decrease the functionality of these methods, including mechanical properties anisotropy and greater susceptibility to cracking due to chemical segregation. The main aim of the current article is to analyze these issues in depth for two powder metallurgy manufacturing processes: laser powder bed fusion (LPBF) and hot-pressing (HP) methods—selected for the experiment because they are in widespread use. Microstructure and mechanical tests were performed in the main manufacturing directions, X and Z. The results show that in both powder metallurgy methods, anisotropy was an issue, although it seems that the problem was more significant for the samples produced via LPBF SLM technique, which displayed only half the elongation in the building direction (18%) compared with the perpendicular direction (almost 38%). However, it should be noted that the fracture toughness of LPBF shows high values in the main directions, higher even than those of the HP and wrought samples. Additionally, the highest level of homogeneity even in comparison with wrought sample, was observed for the HP sintered samples with equiaxed grains with visible twin boundaries. The tensile properties, mainly strength and elongation, were the highest for HP material. Overall, from a practical standpoint, the results showed that HP sintering is the best method in terms of homogeneity based on microstructural and mechanical properties. Keywords:Haynes 282 nickel alloy, LPBF, HP, SEM , Static tensile test Affiliations:
| |||||||||||||||||||||||||
2. | Chmielewski M.♦, Nosewicz S., Jakubowska D.♦, Lewandowska M.♦, Mizera J.♦, Rojek J., Bazarnik P.♦, The influence of sintering time on the microstructural properties of chromium-rhenium matrix composites, International Journal of Refractory Metals and Hard Materials, ISSN: 0263-4368, DOI: 10.1016/j.ijrmhm.2016.05.017, Vol.59, pp.78-86, 2016 Abstract: This paper comprises the results of studies of the changes in the structure of Cr-Re-Al2O3 metal matrix depending on heat treatment time in sintering temperature. The density of material with the following composition: 95%(75%Cr-25%Al2O3)+5%Re was increased using the technique of sintering under pressure (30MPa) at the temperature of 1450°C. As a result, materials characterized by a high relative density (< 97% of theoretical density) were obtained. Next, they were subjected to structural tests including scanning and transmission electron microscopy as well as X-ray diffraction. Changes in the phase composition, grains size and parameters of crystallographic structure depending on heat treatment time were analysed. It was found that during sintering rhenium is dissolved in the chromium matrix and Cr-Re solid solution is formed. When sintering time is extended to 120 min, the matrix of the composite becomes completely homogenous, which results in an increased strength of the composite. Keywords:Metal matrix composites, Rhenium, Hot pressing, Microstructure analysis, XRD Affiliations:
| |||||||||||||||||||||||||
3. | Pawełek A.♦, Piątkowski A.♦, Kuśnierz J.♦, Bogucka J.♦, Jasieński Z.♦, Ranachowski Z., Ranachowski P., Mizera J.♦, Kúdela S.♦, Kúdela Jr S.♦, Acoustic emission in compressed Mg - Li and Al. alloys processed by ECAP, HPT and ARB methods, ARCHIVES OF ACOUSTICS, ISSN: 0137-5075, Vol.32, No.4, pp.88-94, 2007 |
Conference papers
1. | Barglik J.♦, Ducki K.♦, Kukla D., Mizera J.♦, Mrówka-Nowotnik G.♦, Sieniawski J.♦, Smalcerz A.♦, Comparison of Single and Consecutive Dual Frequency Induction Surface Hardening of Gear Wheels, VIII International Scientific Colloquium Modelling for Materials Processing, 2017-09-21/09-22, Riga (LV), DOI: 10.22364/mmp2017.27, pp.185-190, 2017 Abstract: Mathematical modeling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEMbased professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand Affiliations:
|
Conference abstracts
1. | Kwasniak P.♦, Mizera J.♦, Pęcherski R.B., Stacking faults in hexagonal Ti alloys – local instability of crystal lattice and its effect on solution strengthening, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.246-247, 2018 Abstract: Stacking faults are the special regions of the crystal structure that exhibit non-uniform structure and diversified stability. Energy of this defects determines configurations of dislocation cores and type of predominant plastic deformation mechanism. In this study we focus on the generalised stacking fault energy computations of multi-slip-system hexagonal Ti alloys in the context of solution strengthening effect and the atomic as well as electronic structure identification of the analysed planar defects. The far reaching goal is to provide the physical and theoretical basis to answer the still unresolved question concerning the initiation of a micro-shear band in metallic solid. Keywords:stacking faults, hexagonal Ti alloys, instability of crystal lattice, solution strengthening, micro-shear band Affiliations:
| ||||||||||
2. | Kwasniak P.♦, Mizera J.♦, Pęcherski R.B., Solid solution strengthening of hexagonal Ti alloys: structures, energies and Peierls barriers of a type screw dislocations calculated from first principles, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.248-249, 2018 Abstract: Due to their finely balanced strength and density, hexagonal close-packed (hcp) metals such as Ti and Mg are perceived as potential prime elements for the production of new light, and strong alloys essential for the sustainable development of green technologies oriented towards a reduction in mass in all transport sectors. Nevertheless, the conscious design of materials requires information on the relationship between alloy elements and individual deformation mode activity. Such complex knowledge in the context of hcp systems remains a challenge, seriously hampering our ability to anticipate the strength and ductility of new materials developed. In general, hcp metals and alloys suffer from limited cold workability arising from reduced crystal symmetry (compared to cubic crystals) and from the geometrical relations between their dislocation glide planes. On the other hand, the unique properties of single phase hcp materials, such as great strength and reasonable ductility of α-Ti+O solutions and a pronounced solution softening of α-Mg+Y alloys demonstrate the great potential of this groups of materials. All these aspects provide incentive for exploring the physics of plastic deformation and solution strengthening theories. Keywords:Hexagonal Ti alloys, solid solution strengthening, Peierls barriers, screw dislocations, first principles calculations Affiliations:
|