Publications in journals ranked by Journal Citation Reports (JCR) 
Publications in other journals ranked by Ministry of Science and Higher Education
Conference publications indexed in the Web of Science Core Collection
Publications in other journals and conference proceedings
Affiliation to IPPT PAN

1.Markovskyi A., Rosiak M., Vitalii G., Fedorov A., Ciezko M., Szczepański Z., Yuriy Z., Kaczmarek M., Litniewski J., Pakuła M., Acoustic microscopy study on elasto-mechanical properties of Lu 3 Al 5 O 12 :Ce single crystalline films, CrystEngComm , ISSN: 1466-8033, DOI: 10.1039/D5CE00068H, pp.1-13, 2025
Markovskyi A., Rosiak M., Vitalii G., Fedorov A., Ciezko M., Szczepański Z., Yuriy Z., Kaczmarek M., Litniewski J., Pakuła M., Acoustic microscopy study on elasto-mechanical properties of Lu 3 Al 5 O 12 :Ce single crystalline films, CrystEngComm , ISSN: 1466-8033, DOI: 10.1039/D5CE00068H, pp.1-13, 2025

Abstract:
This article presents experimental, theoretical, and numerical studies of the propagation of guided ultrasonic waves in a layered epitaxial structure of garnet compounds. A microscopic model, which yields dispersion equations based on material and geometrical properties, is developed. Acoustic microscopy experiments on a YAG:Ce crystal substrate and an epitaxial structure containing LuAG:Ce single crystalline films, grown using the liquid phase epitaxy growth method onto a YAG:Ce crystal substrate, reveal distinct phase velocity behaviors. The YAG substrate exhibits consistent velocities, minimally influenced by frequency, while the epitaxial structure shows dispersion, indicating frequency-dependent phase velocities. Experimental results are compared with numerically calculated dispersion curves, showing high agreement in the low-frequency range and minor deviations at higher frequencies. An optimization procedure is developed and applied, starting with the YAG substrate and extending to the LuAG:Ce film/YAG:Ce crystal epitaxial structure. The procedure allows for the extraction of material properties, offering valuable insights into the mechanical characteristics of the all-solid-state LuAG:Ce film/YAG:Ce crystal structure. This research represents a significant advancement in understanding ultrasonic wave dynamics in layered structures, particularly unveiling previously unexplored elastic properties of LuAG:Ce single crystalline films as a well-known scintillation material.

2.Piotrzkowska-Wróblewska H. E., Bajkowski J. M., Dyniewicz B., Bajer C. I., Identification of a spatially distributed diffusion model for simulation of temporal cellular growth, JOURNAL OF BIOMECHANICS, ISSN: 0021-9290, DOI: 10.1016/j.jbiomech.2025.112581, Vol.182, pp.1-7, 2025
Piotrzkowska-Wróblewska H. E., Bajkowski J. M., Dyniewicz B., Bajer C. I., Identification of a spatially distributed diffusion model for simulation of temporal cellular growth, JOURNAL OF BIOMECHANICS, ISSN: 0021-9290, DOI: 10.1016/j.jbiomech.2025.112581, Vol.182, pp.1-7, 2025

Abstract:
This study introduces a spatially distributed diffusion model based on a Navier–Stokes formulation with a pseudo-velocity field, providing a framework for modelling cellular growth dynamics within diseased tissues. Five coupled partial differential equations describe diseased cell development within a two-dimensional spatial domain over time. A pseudo-velocity field mimics biomarker concentration increasing over time and space, influencing tumour growth dynamics. An

Keywords:
Tumour growth, Cellular growth, Cancer, Navier–stokes, Diffusion, Finite element method

3.Żołek N.S., Pawłowska A., Comment on 'CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images', PHYSICS IN MEDICINE AND BIOLOGY, ISSN: 0031-9155, DOI: 10.1088/1361-6560/ada7bc, Vol.70, No.3, pp.038001-038001, 2025