1. | Zaszczyńska A., Gradys A.D., Ziemiecka A., Szewczyk P., Tymkiewicz R., Lewandowska-Szumieł M., Stachewicz U., Sajkiewicz P.Ł., Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms25094980, Vol.25, No.9, pp.4980-1-25, 2024Zaszczyńska A., Gradys A.D., Ziemiecka A., Szewczyk P., Tymkiewicz R., Lewandowska-Szumieł M., Stachewicz U., Sajkiewicz P.Ł., Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms25094980, Vol.25, No.9, pp.4980-1-25, 2024Abstract: Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers’ diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation. Keywords: scaffolds,polymers,piezoelectricity,bone tissue engineering,nanofibers,regenerative medicine | |
2. | Nwaji N., Fikadu B., Osial M., Moazzami Goudarzi Z., Asgaran S., Teshome Tufa L., Lee J., Giersig M., Disentangling the catalytic origin in defect engineered 2D NiCoMoS@Ni(CN)2 core-shell heterostructure for energy-saving hydrazine-assisted water oxidation, International Journal of Hydrogen Energy, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2024.08.432, Vol.86, pp.554-563, 2024Nwaji N., Fikadu B., Osial M., Moazzami Goudarzi Z., Asgaran S., Teshome Tufa L., Lee J., Giersig M., Disentangling the catalytic origin in defect engineered 2D NiCoMoS@Ni(CN)2 core-shell heterostructure for energy-saving hydrazine-assisted water oxidation, International Journal of Hydrogen Energy, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2024.08.432, Vol.86, pp.554-563, 2024Abstract: The major hindrance to efficient electrocatalytic hydrogen generation from water electrolysis is the sluggish kinetics with corresponding large overvoltage of oxygen evolution reaction. Herein, we report a defective 2D NiCoMoS@Ni(CN)2 core-shell heterostructure derived from Hofmann-type MOF as an efficient and durable high-performance noble metal-free electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The sluggish oxygen evolution reaction was replaced with a more thermodynamically favourable HzOR, enabling energy-saving electrochemical hydrogen production with 2D NiCoMoS@Ni(CN)2 acting as a bifunctional electrocatalyst for anodic HzOR and cathodic hydrogen generation. Operating at room temperature, the two-electrode electrolyzer delivers 100 mA cm−2 from a cell voltage of just 257 mV, with strong long-term electrochemical durability and nearly 100% Faradaic efficiency for hydrogen evolution in 1.0 M KOH aqueous solution with 0.5 M hydrazine. The density functional theory (DFT) was employed to investigate the origin of catalytic performance and showed that high vacancy creation within the heterointerface endowed NiCoMoS@Ni(CN)2 with favourable functionalities for excellent catalytic performance. Keywords: Defect engineering, Core-shell, Electrocatalyst, Hydrazine oxidation, Heterostructure | |
3. | Moazzami Goudarzi Z., Zaszczyńska A., Kowalczyk T., Sajkiewicz P.Ł., Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics16010093, Vol.16, No.1, pp.93-1-27, 2024Moazzami Goudarzi Z., Zaszczyńska A., Kowalczyk T., Sajkiewicz P.Ł., Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics16010093, Vol.16, No.1, pp.93-1-27, 2024Abstract: Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings. Keywords: wound dressings, drug delivery systems, thermoresponsive hydrogels | |
4. | Haghighat Bayan M.A., Rinoldi C., Rybak D., Zargarian S. S., Zakrzewska A., Cegielska O., Põhako-Palu K., Zhang S., Stobnicka-Kupiec A., Górny Rafał L., Nakielski P., Kogermann K., De Sio L., Ding B., Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, pp.1-15, 2024Haghighat Bayan M.A., Rinoldi C., Rybak D., Zargarian S. S., Zakrzewska A., Cegielska O., Põhako-Palu K., Zhang S., Stobnicka-Kupiec A., Górny Rafał L., Nakielski P., Kogermann K., De Sio L., Ding B., Pierini F., Engineering surgical face masks with photothermal and photodynamic plasmonic nanostructures for enhancing filtration and on-demand pathogen eradication, Biomaterials Science, ISSN: 2047-4849, DOI: 10.1039/d3bm01125a, pp.1-15, 2024Abstract: The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks. | |
5. | Bandzerewicz A., Howis J., Wierzchowski K., Miroslav S., Jiri H., Denis P., Gołofit T., Pilarek M., Gadomska-Gajadhur A., Exploring the application of poly(1,2-ethanediol citrate)/polylactide nonwovens in cell culturing, Frontiers in Bioengineering and Biotechnology, ISSN: 2296-4185, DOI: 10.3389/fbioe.2024.1332290, Vol.12, pp.1-13, 2024Bandzerewicz A., Howis J., Wierzchowski K., Miroslav S., Jiri H., Denis P., Gołofit T., Pilarek M., Gadomska-Gajadhur A., Exploring the application of poly(1,2-ethanediol citrate)/polylactide nonwovens in cell culturing, Frontiers in Bioengineering and Biotechnology, ISSN: 2296-4185, DOI: 10.3389/fbioe.2024.1332290, Vol.12, pp.1-13, 2024Abstract: Biomaterials containing citric acid as a building unit show potential for use as blood vessel and skin tissue substitutes. The success in commercializing implants containing a polymer matrix of poly(1,8-octanediol citrate) provides a rationale for exploring polycitrates based on other diols. Changing the aliphatic chain length of the diol allows functional design strategies to control the implant’s mechanical properties, degradation profile and surface energy. In the present work, poly(1,2-ethanediol citrate) was synthesized and used as an additive to polylactide in the electrospinning process. It was established that the content of polycitrate greatly influences the nonwovens’ properties: an equal mass ratio of polymers resulted in the best morphology. The obtained nonwovens were characterized by surface hydrophilicity, tensile strength, and thermal properties. L929 cell cultures were carried out on their surface. The materials were found to be non-cytotoxic and the degree of porosity was suitable for cell colonization. On the basis of the most important parameters for assessing the condition of cultured cells (cell density and viability, cell metabolic activity and lactate dehydrogenase activity), the potential of PLLA + PECit nonwovens for application in tissue engineering was established. | |
6. | Zaszczyńska A., Kołbuk-Konieczny D., Gradys A. D., Sajkiewicz P. Ł., Development of Poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16040531, Vol.16, No.4, pp.531-1-19, 2024Zaszczyńska A., Kołbuk-Konieczny D., Gradys A. D., Sajkiewicz P. Ł., Development of Poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16040531, Vol.16, No.4, pp.531-1-19, 2024Abstract: The study explores the in vitro biocompatibility and osteoconductivity of poly(methyl methacrylate)/nano-hydroxyapatite (PMMA/nHA) composite nanofibrous scaffolds for bone tissue engineering (BTE). Electrospun scaffolds, exhibiting both low and high fiber orientation, were investigated. The inclusion of hydroxyapatite nanoparticles enhances the osteoconductivity of the scaffolds while maintaining the ease of fabrication through electrospinning. SEM analysis confirms the high-quality morphology of the scaffolds, with successful incorporation of nHA evidenced by SEM-EDS and FTIR methods. DSC analysis indicates that nHA addition increases the PMMA glass transition temperature (Tg) and reduces stress relaxation during electrospinning. Furthermore, higher fiber orientation affects PMMA Tg and stress relaxation differently. Biological studies demonstrate the composite material’s non-toxicity, excellent osteoblast viability, attachment, spreading, and proliferation. Overall, PMMA/nHA composite scaffolds show promise for BTE applications. Keywords: biomaterials, nanofibrous scaffolds, bone tissue engineering | |
7. | Staszczak M., Urbański L., Gradys A. D., Cristea M., Pieczyska E. A., Nucleation, Development and Healing of Micro-Cracks in Shape Memory Polyurethane Subjected to Subsequent Tension Cycles, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16131930, Vol.16, No.13, pp.1-22, 2024Staszczak M., Urbański L., Gradys A. D., Cristea M., Pieczyska E. A., Nucleation, Development and Healing of Micro-Cracks in Shape Memory Polyurethane Subjected to Subsequent Tension Cycles, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16131930, Vol.16, No.13, pp.1-22, 2024Abstract: Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a combination of mechanical loading and appropriate temperatures are related to its particular microstructure. The deformation process leads to the formation and growth of micro-cracks in the SMP structure, whereas the subsequent heating over its glass transition temperature Tg leads to the recovery of its original shape and properties. These processes also affect the SMP microstructure. In addition to the observed macroscopic shape recovery, the healing of micro-crazes and micro-cracks that have nucleated and developed during the loading occurs. Therefore, our study delves into the microscopic aspect, specifically addressing the healing of micro-cracks in the cyclic loading process. The proposed research concerns a thermoplastic polyurethane shape memory polymer (PU-SMP) MM4520 with a Tg of 45 °C. The objective of the study is to investigate the effect of the number of tensile loading-unloading cycles and thermal shape recovery on the evolution of the PU-SMP microstructure. To this end, comprehensive research starting from structural characterization of the initial state and at various stages of the PU-SMP mechanical loading was conducted. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used. Moreover, the shape memory behavior in the thermomechanical loading program was investigated. The obtained average shape fixity value was 99%, while the shape recovery was 92%, which confirmed good shape memory properties of the PU-SMP. Our findings reveal that even during a single loading-unloading tension cycle, crazes and cracks nucleate on the surface of the PU-SMP specimen, whereas the subsequent temperature-induced shape recovery process carried out at the temperature above Tg enables the healing of micro-cracks. Interestingly, the surface of the specimen after three and five loading-unloading cycles did not exhibit crazes and cracks, although some traces of cracks were visible. The traces disappeared after exposing the material to heating at Tg + 20 °C (65 °C) for 30 min. The crack closure phenomenon during deformation, even without heating over Tg, occurred within three and five subsequent cycles of loading-unloading. Notably, in the case of eight loading-unloading cycles, cracks appeared on the surface of the PU-SMP and were healed only after thermal recovery at the particular temperature over Tg. Upon reaching a critical number of cycles, the proper amount of energy required for crack propagation was attained, resulting in wide-open cracks on the material’s surface. It is worth noting that WAXS analysis did not indicate strong signs of typical highly ordered structures in the PU-SMP specimens in their initial state and after the loading history; however, some orientation after the cyclic deformation was observed. Keywords: polyurethane shape memory polymer, glass transition temperature, tensile loading cycles, structure analysis, micro-cracks, healing | |
8. | Osial M., Wilczewski S., Godlewska U., Skórczewska K., Hilus J., Szulc J., Roszkiewicz-Walczuk A., Dąbrowska A., Moazzami Goudarzi Z., Lewandowski K., Wypych T., Nguyen Phuong T., Sumara G., Giersig M., Incorporation of Nanostructural Hydroxyapatite and Curcumin Extract from Curcuma longa L. Rhizome into Polylactide to Obtain Green Composite, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16152169, Vol.16, No.15, pp.2169-1-20, 2024Osial M., Wilczewski S., Godlewska U., Skórczewska K., Hilus J., Szulc J., Roszkiewicz-Walczuk A., Dąbrowska A., Moazzami Goudarzi Z., Lewandowski K., Wypych T., Nguyen Phuong T., Sumara G., Giersig M., Incorporation of Nanostructural Hydroxyapatite and Curcumin Extract from Curcuma longa L. Rhizome into Polylactide to Obtain Green Composite, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym16152169, Vol.16, No.15, pp.2169-1-20, 2024Abstract: This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix had a positive effect on improving selected properties of the composites; the beneficial effect could be enhanced by introducing a green modifier in the form of an extract. Prior to the fabrication of the composite, the filler was characterized in terms of morphology and composition, and the composite was then fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman and Fourier transform infrared spectroscopy (FT-IR), and the mechanical, thermal, thermomechanical, and optical properties were investigated. The proposed material exhibits antioxidant properties against DPPH radicals and antibacterial performance against Escherichia coli (E. coli). The results showed that the nanocomposite has the highest antioxidant and antibacterial properties for 10 wt% HAp with an average diameter of rod-shaped structures below 100 nm. In addition, the introduction of turmeric extract had a positive effect on the tensile strength of the nanocomposites containing 1 and 5% HAp. As the resulting material adsorbs light in a specific wavelength range, it can be used in the medical sector, food-packaging, or coatings.
Keywords: polylactide, hydroxyapatite, turmeric extract, curcumin extract, green composite | |
9. | Osial M., Ha G., Vu V., Nguyen P., Nieciecka D., Pietrzyk‑Thel P., Urbanek O., Olusegun S., Wilczewski S.♦, Giersig M., Do H., Dinh T., One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia, Journal of Nanoparticle Research, ISSN: 1388-0764, DOI: 10.1007/s11051-023-05916-x, Vol.26, No.7, pp.1-23, 2024Osial M., Ha G., Vu V., Nguyen P., Nieciecka D., Pietrzyk‑Thel P., Urbanek O., Olusegun S., Wilczewski S.♦, Giersig M., Do H., Dinh T., One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia, Journal of Nanoparticle Research, ISSN: 1388-0764, DOI: 10.1007/s11051-023-05916-x, Vol.26, No.7, pp.1-23, 2024Abstract: This work presents the synthesis and characterization of a composite made of superparamagnetic iron oxide and hydroxyapatite nanoparticles (SPION/HAp) with a well-developed surface for loading anticancer drugs and for use in magnetic hyperthermia and local chemotherapy. The proposed material was obtained by an easy one-pot co-precipitation method with a controlled ratio of SPION to HAp. The morphology was studied by SEM and TEM, indicating rod-like structures for high HAp content in the composite and granule-like structures with increasing SPION. Its crystallinity, elemental composition, and functional groups were determined by X-ray diffraction, EDS, and FT-IR, respectively. The nanocomposite was then stabilized with citrates (CA), polyethylene glycol (PEG), and folic acid (FA) as agents to improve intracellular absorption, while turbidimetric studies confirmed that only citrates effectively stabilized the magnetic carriers to form a colloidal suspension. Subsequently, 5-fluorouracil (5-FU) was loaded into the magnetic carriers and tested in vitro using the L-929 cell line. The studies showed no cytotoxicity of the citrate-stabilized suspension against fibroblasts and some cytotoxicity after 5-FU release. In addition to in vitro studies, the composite was also tested on biomimetic membranes made of DOPC, DOPE, cholesterol, and DOPS lipids using Langmuir trough. The results show that the resulting suspension interacts with biomimetic membranes, while magnetic hyperthermia studies confirm effective heat generation to achieve therapeutic 42–46 °C and improve drug release from magnetic carriers. Keywords: SPION, Hydroxyapatite, Magnetic hyperthermia, Drug delivery, 5-fluorouracil, Biomimetic membranes, Nanostructures, Cancer treatment | |