Partner: Philomela Komninou

Aristotle University of Thessaloniki (GR)

Recent publications
1.Young T.D., Jurczak G., Lotsari A., Dimitrakopulos G.P., Komninou Ph., Dłużewski P., A study of the piezoelectric properties of semipolar 11(2)over-bar2 GaN/AlN quantum dots, PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, ISSN: 0370-1972, DOI: 10.1002/pssb.201552156, Vol.252, No.10, pp.2296-2303, 2015
Abstract:

GaN quantum dots grown in (inline image)’orientated AlN are studied. The inline image-nucleated quantum dots exhibit rectangular- or trapezoid-based truncated pyramidal morphology. Another quantum dot type orientated on inline image is reported. Based on high-resolution transmission microscopy and crystal symmetry, the geometry of inline image-orientated quantum dots is proposed. A piezoelectric model is used within a finite element method to determine and compare the strain-state and electrostatic potential associated with the quantum dot morphology and an estimation of the band-edge energy is made. We report on some novel properties of the inline image-orientated quantum dot, including mixed strain-states and strain-state bowing.

Keywords:

III–V semiconductors, AlN, GaN, nanostructures, piezoelectric properties, quantum dots

Affiliations:
Young T.D.-IPPT PAN
Jurczak G.-IPPT PAN
Lotsari A.-Aristotle University of Thessaloniki (GR)
Dimitrakopulos G.P.-Aristotle University of Thessaloniki (GR)
Komninou Ph.-Aristotle University of Thessaloniki (GR)
Dłużewski P.-IPPT PAN
2.Dimitrakopulos G.P., Kalesaki E., Kioseoglou J., Kehagias T., Lotsari A., Lahourcade L., Monroy E., Häusler I., Kirmse H., Neumann W., Jurczak G., Young T.D., Dłużewski P., Komninou Ph., Karakostas T., Morphology and strain of self-assembled semi-polar GaN quantum dots in (1112) AlN, JOURNAL OF APPLIED PHYSICS, ISSN: 0021-8979, DOI: 10.1063/1.3506686, Vol.108, pp.104304-1-9, 2010
Abstract:

GaN quantum dots (QDs) grown in semipolar (11-22) AlN by plasma-assisted molecular-beam epitaxy were studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy techniques. The embedded (11-2)-grown QDs exhibited pyramidal or truncated-pyramidal morphology consistent with the symmetry of the nucleating plane, and were delimited by nonpolar and semipolar nanofacets. It was also found that, in addition to the (11-22) surface, QDs nucleated at depressions comprising {10-11} facets. This was justified by ab initio density functional theory calculations showing that such GaN/AlN facets are of lower energy compared to (11-22). Based on quantitative high-resolution TEM strain measurements, the three-dimensional QD strain state was analyzed using finite-element simulations. The internal electrostatic field was then estimated, showing small potential drop along the growth direction, and limited localization at most QD interfaces.

Keywords:

Quantum dots, Transmission electron microscopy, III-V semiconductors, High resolution transmission electron microscopy, Epitaxy

Affiliations:
Dimitrakopulos G.P.-Aristotle University of Thessaloniki (GR)
Kalesaki E.-Aristotle University of Thessaloniki (GR)
Kioseoglou J.-Aristotle University of Thessaloniki (GR)
Kehagias T.-Aristotle University of Thessaloniki (GR)
Lotsari A.-Aristotle University of Thessaloniki (GR)
Lahourcade L.-CNRS (FR)
Monroy E.-CNRS (FR)
Häusler I.-Humboldt-Universität zu Berlin (DE)
Kirmse H.-Humboldt-Universität zu Berlin (DE)
Neumann W.-Humboldt-Universität zu Berlin (DE)
Jurczak G.-IPPT PAN
Young T.D.-IPPT PAN
Dłużewski P.-IPPT PAN
Komninou Ph.-Aristotle University of Thessaloniki (GR)
Karakostas T.-Aristotle University of Thessaloniki (GR)
3.Dłużewski P., Young T.D., Dimitrakopulos G., Komninou Ph., Continuum and atomistic modelling of the mixed straight dislocation, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, DOI: 10.1615/IntJMultCompEng.v8.i3.80, Vol.8, pp.331-342, 2010
Abstract:

A continuum and atomistic approach to the modeling of dislocations observed by high-resolution transmission electron microscopy (HRTEM) is discussed in terms of the continuum theory of dislocations. The atomistic models are obtained by means of the use of a mathematical formula for discrete dislocations. A new analytical solution for a continuously distributed dislocation core is presented. This solution is employed in the finite element modeling of residual stresses induced by the net of dislocations visible on an HRTEM image of GaN structure. This paper terminates with some comments on the atomistic/finite-element modeling of dislocation fields. Because of some confusion concerning notations used in the literature, the mathematical foundations of the continuum theory of dislocations are revisited.

Keywords:

dislocations, field theory, atomistic models, finite element method, high-resolution transmission electron microscopy

Affiliations:
Dłużewski P.-IPPT PAN
Young T.D.-IPPT PAN
Dimitrakopulos G.-Aristotle University of Thessaloniki (GR)
Komninou Ph.-Aristotle University of Thessaloniki (GR)
4.Young T.D., Kioseoglou J., Dimitrakopulos G.P., Dłużewski P., Komninou Ph., 3D modelling of misfit networks in the interface region of heterostructures, JOURNAL OF PHYSICS D-APPLIED PHYSICS, ISSN: 0022-3727, DOI: 10.1088/0022-3727/40/13/027, Vol.40, pp.4084-4091, 2007
Abstract:

We present a methodology for the stress–strain analysis of a film/substrate interface by combining crystallographic and continuum modelling. Starting from measurements of lattice parameters available from experimental observations, the heterostructure is recast initially in the form of a crystallographic model and finally as a continuum elastic model. The derived method is capable of handling dense arrays of misfit dislocations as well as large areas of the interface between two crystal structures. As an application we consider the misfit dislocation network in the GaN/Al2O3 interface region through determination of strain relaxation and associated residual stresses. Our calculated results are referred back to and found to be in good agreement with the experimental observations of misfit dislocation arrays obtained from high resolution transmission electron microscopy.

Affiliations:
Young T.D.-IPPT PAN
Kioseoglou J.-Aristotle University of Thessaloniki (GR)
Dimitrakopulos G.P.-Aristotle University of Thessaloniki (GR)
Dłużewski P.-IPPT PAN
Komninou Ph.-Aristotle University of Thessaloniki (GR)

List of chapters in recent monographs
1.
3
Dłużewski P., Young T.D., Dimitakopulos G., Kioseoglou J., Komninou Ph., Computer Methods in Mechanics, Advanced Structured Materials, rozdział: Nonlinear finite element and atomistic modelling of dislocations in heterostructures, Springer Verlag, Kuczma M., Wilmański K. (Eds.), 1/III, pp.239-253, 2010

Conference papers
1.Jurczak G., Maździarz M., Dłużewski P., Dimitrakopulos G.P., Komninou Ph., Karakostas T., On the applicability of elastic model to very thin crystalline layers, JOURNAL OF PHYSICS: CONFERENCE SERIES, ISSN: 1742-6588, DOI: 10.1088/1742-6596/1190/1/012017, No.1190, pp.012017-1-5, 2019
Abstract:

Elastic model of continuum material is often used to simulate the relaxation of crystalline heterostructures. There are many reports on the successful application of the theory of elasticity to nano-sized crystalline heterostructures, even if the continuum condition for them is hardly fulfilled. On the other hand, progress in epitaxial growth allows for the preparation of stable ultra-thin layers with thickness of few monolayers. For such ultra-thin layers, results provided by continuum model and molecular statics/dynamics calculations become diverging. The key problem seems to be located at the modelling of the interface between layers, which is problematic in the continuum approach. By applying a step-wise substitutive compositional interfacial function, it is possible to obtain good agreement with molecular dynamics calculations, even for a single monolayer heterostructure. We propose another approach that uses composition as an extra parameter during finite element calculations, along with classical nodal displacements. Such an approach creates a chemo-elastic coupling that allows to interpolate the composition much like in the case of atomistic calculations.

Keywords:

ultra-thin layers, elastic relaxation, molecular statics, finite elemenet modelling

Affiliations:
Jurczak G.-IPPT PAN
Maździarz M.-IPPT PAN
Dłużewski P.-IPPT PAN
Dimitrakopulos G.P.-Aristotle University of Thessaloniki (GR)
Komninou Ph.-Aristotle University of Thessaloniki (GR)
Karakostas T.-Aristotle University of Thessaloniki (GR)

Conference abstracts
1.Jurczak G., Maździarz M., Dłużewski P., Dimitrakopulos G., Komninou Ph., Karakostas T., On the Applicability of the Theory of Elasticity to Very Thin Layers, EDS2018, 19th International Conference on Extended Defects in Semiconductors, 2018-06-24/06-29, Thessaloniki (GR), pp.1, 2018
Abstract:

Theory of elasticity, a continuum model of a macroscopic material is commonly used to model a relaxation of a crystalline heterostructures. There are many reports on the successful application of theory of elasticity to nanometer crystalline heterostructures, even if the continuum condition for these structures is hardly fulfilled. On the other hand progress in epitaxial growth techniques allows to prepare the stable ultra thin layers with the thickness about a single monolayer. For such extremely thin layers the theory of elasticity seems to fail in describing the relaxation process. The results provided by theory of elasticity and experimental measurements or molecular statics/dynamics become diverging. The key problem in that case seems to be located at the interface between layers and related to composition change, which is problematic in classic, elastic approach. By applying a "substitutive" composition of the interface layers which is just an interpolation, it is possible to obtain a good agreement with molecular statics, even for 1 monolayer heterostructure. Instead of classic approach to the composition within the theory of elasticity, we propose another approach which takes into account the composition as an extra degree of freedom along with classical displacement. Such approach creates a chemo-elastic coupling with composition interpolated by use of the Vegard's law. This allows to take into account a composition changes at the interface and avoid mesh refining necessary at the classic approach.

Keywords:

theory of elasticity, semiconductor, monolayer, relaxation

Affiliations:
Jurczak G.-IPPT PAN
Maździarz M.-IPPT PAN
Dłużewski P.-IPPT PAN
Dimitrakopulos G.-Aristotle University of Thessaloniki (GR)
Komninou Ph.-Aristotle University of Thessaloniki (GR)
Karakostas T.-Aristotle University of Thessaloniki (GR)