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Abstract. Elastic model of continuum material is often used to simulate the relaxation of 

crystalline heterostructures. There are many reports on the successful application of the theory 

of elasticity to nano-sized crystalline heterostructures, even if the continuum condition for them 

is hardly fulfilled. On the other hand, progress in epitaxial growth allows for the preparation of 

stable ultra-thin layers with thickness of few monolayers. For such ultra-thin layers, results 

provided by continuum model and molecular statics/dynamics calculations become diverging. 

The key problem seems to be located at the modelling of the interface between layers, which is 

problematic in the continuum approach. By applying a step-wise substitutive compositional 

interfacial function, it is possible to obtain good agreement with molecular dynamics 

calculations, even for a single monolayer heterostructure. We propose another approach that 

uses composition as an extra parameter during finite element calculations, along with classical 

nodal displacements. Such an approach creates a chemo-elastic coupling that allows to 

interpolate the composition much like in the case of atomistic calculations. 

1. Introduction 

In recent decades, III-nitride heterostructures in the form of quantum wells (QW), wires (QWR), and 

dots (QD) found many applications in optoelectronics, e.g. they have been used as structural elements 

in light-emitting and laser diodes, sensors, photovoltaic devices, etc. To enhance the intensity of light 

emission and other special capabilities of these nano-heterostructures, e.g. in the long wavelength 

operational range [1,2], a high indium content in ternary and quaternary III-N semiconductors is 

exploited. Unfortunately, the behaviour of the indium element, lack of suitable templates, and large 

lattice mismatch cause indium clustering and high densities of extended defects [3,4,5,6]. A solution of 

indium alloying problems is expected by the use of very thin, binary InN layers in the form of QWs. 

These thin layers, with thicknesses below critical, are arranged in short period superlattices (SPS) 

[4,7]. 

 The composition of a crystalline heterostructure, as well as the lattice strain, which are related to 

each other can be estimated by precise measurements of the positions and intensities of atomic 

columns using high resolution (scanning) transmission electron microscopy (HR(S)TEM) [7,8]. In 

order to establish a connection between strain and composition, a full elastic accommodation of the 

misfit and Vegard's law are usually assumed. To describe relaxation of a crystalline heterostructure, 

the theory of elasticity is employed, which uses a continuum model of the material. There are many 

reports on the successful application of elastic model to nano-sized crystalline heterostructures (see for 

example [8,9,10,11]). However, for ultra-thin layers, elasticity does not accurately describe the 
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relaxation of the heterostructure. The results provided by elasticity differ from molecular 

statics/dynamics calculations. The problem seems to be addressed to the interfaces between atomic 

layers, and requires a distinct approach pertaining to the chemical composition. To reproduce atomistic 

composition at the interface, it is necessary to introduce a substitutive compositional function in the 

continuum model of the interface. This is crucial in the case of very thin layers, with thickness of few 

monolayers (MLs), where the interfaces constitute large part of the layer. 

 In this paper, the elastic relaxation of binary and ternary III-N heterostructures in the form of 1 ML 

and 2 MLs QWs are considered by use of elasticity and molecular dynamics (MD). A modified 

continuous approach with the compositional interfacial function x within the interface allows to take 

into account the specific character of very thin layers and to obtain results in agreement with molecular 

dynamics calculations. 

2. Computational scheme 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Atomistic, classical continuous, and modified 

continuous (with additional, compositional interfacial 

function x) schemes of the 1 ML InN/GaN hetero-

structure. 

 

Let us consider In0.33Ga0.67N/GaN and InN/GaN, polar heterostructures which consist of 5 QWs with 

nominal thickness equal to 1 ML and 2 MLs, as described in [7]. The thickness of the GaN barriers 

was equal to 10 lattice parameters c. The bottom and top GaN layers of our computational samples 

were limited to 20c. Since our heterostructure has in-plane dimensions much larger than its thickness, 

it is justified to limit the in-plane size of our sample and apply Dirichlet-type boundary conditions 

(BCs) instead. As a result, elastic relaxation is allowed only along the growth direction, i.e. along c-

axis. To determine the displacement and strain fields of the relaxed heterostructure, a boundary value 

problem of the elasticity has to be formulated and solved either analytically or numerically, for 

example by the finite element method (FEM). The properties of ternary alloys were calculated by use 

of Vegard's law and elastic parameters of the binary crystals given in [12]. FEM calculations were  

Figure 2. Compositional changes for 1 ML InN/GaN heterostructure (a), and lattice strains in atomistic and classical 

continuum approach: b) for 1 ML of In0.33Ga0.67N/GaN and c) for 2 MLs of InN/GaN heterostructure. Dashed lines in 

compositional chart denote assumed approximation for substitutive compositional function x at the interface. Charts show 

distribution for a single QW only. 



19th International Conference on Extended Defects in Semiconductors (EDS2018)

IOP Conf. Series: Journal of Physics: Conf. Series 1190 (2019) 012017

IOP Publishing

doi:10.1088/1742-6596/1190/1/012017

3

 
 
 
 
 
 

performed in the FEAP program [13] with use of 3D 8-node solid elements [14]. The FE mesh 

coincides with atomic layers to be consistent with MD calculations, since d-spacing strain is calculated 

on the basis of average displacements between MLs. In the case of MD simulations, the supercells 

were relaxed by use of a bond-order, many body Tersoff potential in LAMMPS software [15]. More 

details concerning atomic interactions and the parameterization are given in [7]. Atomistic and 

continuous models of the 1 ML InN/GaN heterostructure are depicted in Figure 1. The local coordinate 

system XYZ is assumed that way Z axis corresponds to the growth direction. According to the applied 

BCs and relaxation scheme, the shear stresses vanish, while normal stresses are (Voight notation): 
𝜎𝑥 = 𝐶11𝜀𝑥

𝑒 + 𝐶12𝜀𝑦
𝑒 + 𝐶13𝜀𝑧

𝑒 ≠ 0,

𝜎𝑦 = 𝐶12𝜀𝑥
𝑒 + 𝐶11𝜀𝑦

𝑒 + 𝐶13𝜀𝑧
𝑒 ≠ 0,

𝜎𝑧 = 𝐶13𝜀𝑥
𝑒 + 𝐶13𝜀𝑦

𝑒 + 𝐶33𝜀𝑧
𝑒 = 0,

                                                  (1) 

where Cij means stiffness coefficients. In our model, the lattice (total) strain ε is the sum of elastic εe 

and chemical (lattice mismatch) εch strains assuring consistency with HR(S)TEM strain measurements 

[7,8]. Lack of lattice in-plane strains εx= εy= 0 comes from the Dirichlet-type BCs, so elastic in-plane 

strains are:  

𝜀𝑥
𝑒 = −𝜀𝑥

𝑐ℎ = 𝜀𝑦
𝑒 = −𝜀𝑦

𝑐ℎ = − (
𝑎𝑄𝑊

𝑎𝑀 − 1),                                               (2) 

where aQW is an appropriate lattice parameter of the In0.33Ga0.67N or InN QW layer, and aM is the lattice 

parameter of the GaN barrier. Finally, we may calculate the εe
z strain as:  

𝜀𝑧
𝑒 =

2𝐶13

𝐶33
𝜀𝑥

𝑐ℎ.                                                                    (3) 

By substituting the right lattice parameters to Equation [2] and elastic stiffness coefficients to Equation 

[3], the expected elastic strains εe
z in our heterostructures are equal to 2.19% for In0.33Ga0.67N and 

9.17% for InN layer. Lattice mismatches εch
z, related to c-axis relaxation direction, according to 

Equation [2] are equal to 3.30% and 9.99%, respectively. To sum up, lattice strains εz are equal to 

5.49% and 19.16%, respectively. These values correspond to d-spacing strain calculated based on FE 

mesh displacements, see Figure 2. Figure 2 shows also the d-spacing strain distribution calculated by 

MD [7] and nodal projections of FE strains, i.e. displacements of the nodes u multiplied by derivatives 

of the shape functions N, analogously to small strain tensor [13]: 

𝜺𝑒 =
1

2
(∇T𝐮 + ∇𝐮).                                                                         (4) 

Then, elastic strain calculated in Gauss points must be projected back to nodes with a proper weight. 

d-spacing strain distributions and its values obtained by continuum (FEM) and atomistic approach 

(MD) differ significantly, see for example 1 ML QW in Figure 2(b). In the case of 2 MLs, the d-

spacing strain discrepancy is much smaller, but the strain distribution is still different. The FE nodal 

projection of the lattice strain repeats the MD d-spacing curves and gives results far better than d-

spacing strain calculated based on nodal displacements. Anyway, displacements of nodes contain 

important information about the relaxation of the sample, for example in the case of reconstruction of 

the actual atomic structure. Therefore, modification of the classical elastic approach is necessary to get 

agreement with MD calculations. Modifications in strain distribution done by nodal projection 

suggests that any heterostructure interface should be modelled by applying a substitutive composition 

Figure 3. The same as in Figure 2 but now for modified elastic approach (additional sub-elements at the interface). 
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function, much like in the case of interpolation of atomistic composition, see Figure 2(a). The classical 

continuum approach assumes rectangular, sharp interfaces with an abrupt change of composition and 

physical properties. Distinct interpretation of the interface by the continuum and atomistic approach 

results in different d-spacing strains and their distributions. 

 To reduce the discrepancy in interpretation of the interface composition function, let us modify the 

FE mesh by use of extra sub-layers corresponding to compositional grading, as depicted in Figure 3(a). 

The accuracy of this approach depends on the quality of the interpolation, i.e. on the number of sub-

layers. The drawback of the approach is a procedural one, pertaining to a step-like interpolation of a 

compositional function. The more steps, the more precise is the interpolation. Unfortunately, this also 

increases the number of sub-elements at the interface and the work quantity to prepare calculations in 

each sub-element. Results presented in Figure 3 seems to be somewhat overestimated. It is an effect of 

the assumed compositional interpolation based on 3 sub-layers at the interface area with step-like 

composition interpolation. Assumed composition function overestimates the indium content in 

comparison to the atomistic calculations. Thereby, d-spacing strains related to a continuum model 

overestimate atomistic results as well. 

 To avoid the drawback of the approach based on interfacial sub-layers, we propose a new 

methodology within the framework of continuum approach, which uses additional, compositional 

parameter at the FE node (addition to classical displacements). Using FE shape functions [14] it is 

possible to span the composition over the element and get continuum interfacial composition function 

x. Composition function modify the right-hand side vector of the global matrix equation solved by 

FEM [13]: 
[𝑲][𝒒] = [𝑸],

𝑄𝑖 = ∑ [𝐶𝑖𝑗 𝜀𝑗
𝑐ℎ(𝑥𝑙) 𝛻𝑖𝑁𝑙]𝑀

𝑙=1 𝛥𝑉𝑙 .
                                                    (5) 

Square matrix Kij denotes the so-called stiffness matrix, qj is the vector of nodal degrees of freedom, 

and the right-hand side vector Qi is related to external forces acting in nodes. The local mismatch 

strain εch(xl) is related to composition xl interpolated at a given Gauss point l. N denotes the 

derivative of the element's shape function, while ΔV is a weight function related to element volume. d-

spacing strains depicted in Figure 4 were calculated with use of a compositional parameter at FE 

nodes. The assumed substitutive composition repeats an atomistic layout presented in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Lattice strains calculated by atomistic and chemo-elastic approach: a) for 1ML of In0.33Ga0.67N /GaN and b) for 

2MLs of InN/GaN hetero-structure. Composition function of chemo-elastic approach reproduces an atomistic model, see 

Figure 2(a). 

3. Summary 

Ultra-thin crystalline heterostructures need more attention during modelling of their elastic relaxation 

due to the interfacial influences. Abrupt compositional changes at the interface in the case of a 

classical elastic approach are not in line with atomistic modelling. To avoid such discrepancies within 

a classical, elastic approach, extra sub-layers may be introduced at the interfacial region with 

appropriate step-like composition and elastic properties. Another option is to apply an additional nodal 
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parameter related to a layer composition. In this way it is possible to get consistent displacement and 

d-spacing strain fields in the case of continuum and atomistic modelling of the elastic relaxation. The 

compositional interface function seems to be more attractive approach compared to the sub-layers 

approach as it requires only small changes in the FEM code and creates more versatile chemo-elastic 

coupled problem. 
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