Partner: Yevgen Syryanyy |
|
Recent publications
1. | Demchenko Iraida N.♦, Nikiforow K.♦, Chernyshova M.♦, Melikhov Y., Syryanyy Y.♦, Korsunska N.♦, Khomenkova L.♦, Brodnikovskyi Y.♦, Brodnikovskyi D.♦, X-ray Photoelectron Spectroscopy Analysis of Scandia-Ceria-Stabilized Zirconia Composites with Different Transport Properties, Materials, ISSN: 1996-1944, DOI: 10.3390/ma16165504, Vol.16, No.16, pp.5504-1-12, 2023 Abstract: This work aims to study a possible modification in the electronic structure of scandia-ceria-stabilized zirconia (10Sc1CeSZ) ceramics sintered at different temperatures. In addition to using X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy to investigate the structural and electrical properties, we employed X-ray photoelectron spectroscopy (XPS) to determine the chemical state information of the atoms involved, along with compositional analysis. As expected, a significant increase in grain ionic conductivity with the sintering temperature was present. This increase was accompanied by a decrease in the porosity of the samples, an increase in the grain size, and a transformation from the rhombohedral to the cubic phase. The phase transformation was detected not only using XRD, but also using XPS and, for this type of ceramic, XPS detected this transformation for the first time. In addition to the changes in the structural characteristics, the increase in the ionic conductivity was accompanied by a modification in the electronic structure of the ceramic surface. The XPS results showed that the surface of the ceramic sintered at the lower temperature of 1100 °C had a higher amount of Zr–OH bonds than the surface of the ceramic sintered at the higher temperature of 1400 °C. The existence of these Zr–OH bonds was confirmed using Fourier-transform infrared spectroscopy (FTIR). From this result, taken together with the difference between the oxygen/zirconium ratios in these ceramics, also identified using XPS, we conclude that there were fewer oxygen vacancies in the ceramic sintered at the lower temperature. It is argued that these two factors, together with the changes in the structural characteristics, have a direct influence on the conductive properties of the studied ceramics sintered at different temperatures. XPS, zirconia, scandia-ceria-stabilized zirconia, ScCSZ, SOFC Affiliations:
| ||||||||||||||||||||||||||||||||||||||||
2. | Shokri A.♦, Melikhov Y., Syryanyy Y.♦, Demchenko Iraida N.♦, Point Defects in Silicon-Doped β-Ga2O3: Hybrid-DFT Calculations, ACS Omega, ISSN: 2470-1343, DOI: 10.1021/acsomega.3c05557, Vol.8, No.46, pp.43732-43738, 2023 Abstract: In this work, hybrid density functional theory calculations are used to evaluate the structural and electronic properties and formation energies of Si-doped β-Ga2O3. Overall, eight interstitial (Sii) and two substitutional (SiGa) positions are considered. In general, our results indicate that the formation energy of such systems is significantly influenced by the charge state of the defect. It is confirmed that it is energetically more favorable for the substitution process to proceed under Ga-poor growth conditions than under Ga-rich growth conditions. Furthermore, it is confirmed that the formation of SiGaI with a tetrahedral coordination geometry is more favorable than the formation of SiGaII with an octahedral one. Out of all considered interstitial positions, due to the negative formation energy of the Si +3 charge state at i8 and i9 interstitial positions over the wide range of Fermi energy, this type of defect can be spontaneously stable. Finally, due to a local distortion caused by the presence of the interstitial atom as well as its charge state, these systems obtain a spin-polarized ground state with a noticeable magnetic moment. Affiliations:
| ||||||||||||||||||||||||||||||||||||||||
3. | Syryanyy Y.♦, Zając M.♦, Guziewicz E.♦, Wozniak W.♦, Melikhov Y., Chernyshova M.♦, Ratajczak R.♦, Demchenko I.N.♦, Polarized dependence of soft X-ray absorption near edge structure of ZnO films implanted by Yb, Materials Science in Semiconductor Processing, ISSN: 1369-8001, DOI: 10.1016/j.mssp.2022.106609, Vol.144, pp.106609-1-8, 2022 Abstract: Virgin and Yb-implanted epitaxial ZnO films grown using atomic layer deposition (ALD) were investigated by X-ray absorption spectroscopy (XAS). XAS study revealed a strong polarization dependence of films determined by the orientation of the polarization vector of the synchrotron radiation to the sample surface. It also indicated that the implantation and subsequent annealing have an important influence on the native point defect complexes in the ZnO. Comparison of experimental spectra with the modelled ones, which are computed based on the linear combination of model spectra corresponding to the selected point defects and their complexes, confirmed the presence of donor-acceptor complexes (mVZn - nVO, m = 1,4; n = 1,2) in the samples under study. The mechanism of vacancy complexes formation is unclear as it takes place under non-equilibrium conditions, for which any theoretical method has not been well established. Exploring the 3 d → 4 f absorption, it was found that oxidation state of Yb in ZnO is 3+, which is consistent with the XPS findings and previously conducted Resonant Photoemission Spectroscopy (RPES) investigations. The inversion of the polarization dependence for samples with different Yb fluences visible in Yb M5 spectra can be associated with a tilt of the oxygen pseudo octahedra or/and with their distortion. The analysis of the presented data suggests that the donor-acceptor complexes are present both in as grown and implanted films and may influence their electrical properties. This suggestion was confirmed by previous Hall measurements showing that the resistivity of annealed ZnO:Yb film with a fluence of 5e15 ions/cm2 decreases by about one order compared to the one with a fluence of 5e14 ions/cm2. Affiliations:
| ||||||||||||||||||||||||||||||||||||||||
4. | Demchenko I.N.♦, Melikhov Y., Walczak M.S.♦, Ratajczak R.♦, Sobczak K.♦, Barcz A.♦, Minikaev R.♦, Dynowska E.♦, Domagała J.Z.♦, Chernyshova M.♦, Syryanyy Y.♦, Gavrilov N.V.♦, Sawicki M.♦, Effect of rapid thermal annealing on damage of silicon matrix implanted by low-energy rhenium ions, JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2020.156433, Vol.846, pp.156433-1-10, 2020 Abstract: The structural, electronic, and magnetic properties of low-energy rhenium implanted c-Si are examined for the first time. The damage created by rhenium ions and the following partial reconstruction of the silicon host matrix after rapid thermal annealing (RTA) are investigated as a function of the fluence. Rutherford backscattering spectrometry (RBS) results reveal that the implanted ions are located in the near-surface region with the distribution maximum at about 23 nm below the surface. The analysis of rhenium-depth distribution using the McChasy code shows that the implanted Re-ions are located in the interstitial lattice positions. The RTA leads to a partial recovery of the silicon crystal structure. According to the RBS results, the formed inclusions are not coherent with the silicon host matrix causing an increase of the lattice distortion. Analysis of channeled RBS/c spectra carried out by the McChasy code revealed different levels of bent channels in damaged regions suggesting bimodal distribution of inclusions in the silicon. Studies of high-resolution X-ray photoelectron spectroscopy (XPS) conducted after the RTA showed the shift of Re 4f7/2 binding energy (BE) by +0.68 and + 0.85 eV with respect to metallic rhenium for the samples with lower/higher fluencies, respectively. Complex XPS, density functional theory (DFT) simulations, and transmission electron microscopy (TEM) data analysis allowed us to conclude that the near-surface layer of the sample (~10 nm) consists of nanoinclusions with cubic and/or hexagonal ReSi. In the middle area of the samples, much larger nanoinclusions (>10/20 nm for higher/lower fluencies, respectively) containing pure metallic rhenium inside are formed. The RTA increases the magnetic moment of the sample with the lower dose nearly 20-fold, whereas in the sample with the higher dose a 3-fold increment is observed only. The magnetic response of the examined systems after the RTA indicates a presence of magnetic interactions between the nanoinclusions resulting in the system exhibiting super-spin glass or super-ferromagnetism. Keywords:rhenium-implanted silicon, RBS, XPS, RTA, TEM, DFT Affiliations:
| ||||||||||||||||||||||||||||||||||||||||
5. | Demchenko I.N.♦, Syryanyy Y.♦, Melikhov Y., Nittler L.♦, Gladczuk L.♦, Lasek K.♦, Cozzarini L.♦, Dalmiglio M.♦, Goldoni A.♦, Konstantynov P.♦, Chernyshova M.♦, X-ray photoelectron spectroscopy analysis as a tool to assess factors influencing magnetic anisotropy type in Co/MgO system with gold interlayer, SCRIPTA MATERIALIA, ISSN: 1359-6462, DOI: 10.1016/j.scriptamat.2017.10.006, Vol.145, pp.50-53, 2018 Abstract: X-ray photoelectron spectroscopy (XPS) studies of Au/Co/Au(0.3 nm)/MgO and Au/Co/MgO systems were conducted in order to monitor the electronic structure modification at Co/MgO interface with/without gold interlayer. A detailed analysis of Co 2p states revealed that the amount of minor oxygen contribution at Co/MgO interface decreased after the Au interlayer was added. The obtained XPS results together with density functional theory (DFT) allowed explanation of the increase of surface anisotropy energy in the sample with the gold interlayer in terms of (i) noble and transitional metal d-d orbital hybridization; (ii) interfacial Co 3d and O 2p; and (iii) interface imperfection. Affiliations:
| ||||||||||||||||||||||||||||||||||||||||
6. | Demchenko I.N.♦, Melikhov Y., Syryanyy Y.♦, Zaytseva I.♦, Konstantynov P.♦, Chernyshov M.♦, Effect of argon sputtering on XPS depth-profiling results of Si/Nb/Si, JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, ISSN: 0368-2048, DOI: 10.1016/j.elspec.2017.09.009, Vol.224, pp.17-22, 2018 Abstract: Ultrathin Si/Nb/Si trilayer is an excellent example of a system for which dimensionality effects, together with other factors like type of a substrate material and growth method, influence strongly its superconducting properties. This study offers some important insights into experimental investigation of density of states of such a system with the aim to identify an electronic structure of the interface as a function of niobium layer thickness. For that, two Si/Nb/Si trilayers with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were studied using high-resolution (HR) XPS depth-profile techniques. Strong influence of sputtering was observed, which resulted in severe intermixture of Si and Nb atoms. Nevertheless, a sharp top interface and metallic phase of niobium were detected for the thicker layer sample. On the contrary, a Nb-rich mixed alloy at top interface was observed for the thinner layer sample. Keywords:High-resolution X-ray photoelectron spectroscopy, XPS, Si/Nb/Si, NbSi, Depth profiling Affiliations:
|