Partner: V.A. Gerasimenko


Recent publications
1.Tarelnyk V., Haponova O., Konoplianchenko V., Tarelnyk N., Mikulina M., Gerasimenko V., Vasylenko O., Zubko V., Melnyk V., Properties of Surfaces Parts from X10CrNiTi18-10 Steel Operating in Conditions of Radiation Exposure Retailored by Electrospark Alloying. Pt. 3. X-ray Spectral Analysis of Retailored Coatings, Metallofizika i Noveishie Tekhnologii, ISSN: 1024-1809, DOI: 10.15407/mfint.44.10.1323, Vol.44, No.10, pp.1323-1333, 2022
Abstract:

In article we present the results of studies of the local x-ray spectral analysis of coatings formed by the electrospark alloying (ESA) method at the discharge energy Wp = 0.13, 0.52 and 0.9 J by anodes from nickel and stainless steel X10CrNiTi18-10 on the cathode surface from X10CrNiTi18-10 steel. During ESA by stainless steel X10CrNiTi18-10 anode with an increase Wp in characteristic points and from the entire investigated surface of the coating, the quantitative elemental composition is not changed. The analysis of elements distribution over the depth of the formed layer is showed that when using the electrode tool from steel X10CrNiTi18-10 with an increase in Wp, there are a slight decrease in chromium and an increase in nickel and titanium in the surface layer. When steel X10CrNiTi18-10 is replaced by nickel with an increase in Wp, the concentration of nickel on the coating surface decreases from 95.38 to 89.04%. As the recession deepens from the coating surface, the concentration of nickel gradually decreases, respectively, at Wp = 0.13, 0.52 and 0.9 J from 96.29, 90.29 and 89.04% on the surface to 9.0, 10.30 and 9.9% at depth: 120, 165 and 240 μm. At the same time, the concentration of chromium, titanium and iron gradually increases.

Keywords:

electrospark alloying, nickel, steel, x-ray spectral analysis, scan step, topography, spectrum

Affiliations:
Tarelnyk V.-Sumy National Agrarian University (UA)
Haponova O.-other affiliation
Konoplianchenko V.-other affiliation
Tarelnyk N.-Sumy National Agrarian University (UA)
Mikulina M.-other affiliation
Gerasimenko V.-other affiliation
Vasylenko O.-other affiliation
Zubko V.-other affiliation
Melnyk V.-other affiliation

Conference abstracts
1.Tarelnyk V., Konoplianchenko I., Haponova O., Radionov O., Antoszewski B., Kundera C., Tarelnyk N., Voloshko T., Bondarev S., Gerasimenko V., Ryasna O., Sarzhanov B., Polyvanyi A., Application of Wear-Resistant Nanostructures Formed by Ion Nitridizing & Electrospark Alloying for Protection of Rolling Bearing Seat Surfaces, 2022 IEEE, 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), 2022-09-11/09-16, Kraków (PL), DOI: 10.1109/NAP55339.2022, pp.1-1, 2022
Abstract:

The paper analyzes the works devoted to solving problems affecting the bearing life of rolling bearings (RB) and to revealing reserves for its increase. There proposed a new technology for forming a protective coating on the shaft bearing journal or on the surface of a sleeve pressed thereon, which consists in the use of a combined technology comprising a process for stage-by-stage aluminizing by the method of electrospark alloying (A ESA ) followed by a process of ion nitriding (IN). Such a coating has a 100% continuity, the greatest thickness of the increased hardness zone of 300 µm, the surface microhardness of 7700 MPa, and the roughness (Ra) after non-abrasive ultrasonic finishing (NAUF) of 0.5 µm, The results of the X-ray microanalysis indicate that an increased content of aluminum is observed in the surface layer at the distance of up to 40 µm after the stage-by-stage AESA process. The research results have shown that in order to restore the shaft bearing journal neck surface layer hardness, which had been lost because of the repair work, the step-by-step AESA technology is more preferable. Thus, when removing the surface layer to a depth of 0.15 mm and subsequently carburizing by the method of electrospark alloying (C ESA ), the maximum microhardness of the surface layer is 7250 MPa, and the thickness of the zone of the increased hardness is 150 µm, At subsequently processing by the AESA method, these quality parameters of the surface layer are, respectively, 7350 MPa and 210 µm. The use of the NAUF method, both after C ESA and AESA processes, makes it possible to reduce the surface roughness up to Ra = 0.5 µm. To decrease the surface roughness of the RB housing seat, it is advisably to practice burnishing with a diamond tool (DB) after the A ESA process

Affiliations:
Tarelnyk V.-Sumy National Agrarian University (UA)
Konoplianchenko I.-other affiliation
Haponova O.-other affiliation
Radionov O.-other affiliation
Antoszewski B.-Kielce University of Technology (PL)
Kundera C.-other affiliation
Tarelnyk N.-Sumy National Agrarian University (UA)
Voloshko T.-other affiliation
Bondarev S.-other affiliation
Gerasimenko V.-other affiliation
Ryasna O.-other affiliation
Sarzhanov B.-other affiliation
Polyvanyi A.-other affiliation