Partner: R. Willumeit-Römer |
Recent publications
1. | Espiritu J.♦, Sefa S.♦, Ćwieka H., Greving I.♦, Flenner S.♦, Willumeit-Römer R.♦, Seitz J.-M.♦, Zeller-Plumhoff B.♦, Detailing the influence of surface-treated biodegradable magnesium-based implants on the lacuno-canalicular network in sheep bone: A pilot study, Bioactive Materials, ISSN: 2452-199X, DOI: 10.2139/ssrn.4279434, pp.1-26, 2022 Abstract: An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market. A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone. Osteocytes, which are housed and communicate through the lacuno-canalicular network (LCN), are integral to bone health and remodelling processes. Therefore, it is essential to examine the framework of the LCN in response to implant materials or surface treatments.Biodegradable materials offer an alternative solution to permanent implants, which may require revision or removal surgeries. Magnesium alloys have resurfaced as promising materials due to their bone-like properties and safe degradation in vivo. To further tailor their degradation capabilities, surface treatments such as plasma electrolytic oxidation (PEO) have demonstrated to slow degradation.For the first time, the influence of a biodegradable material on the LCN is investigated by means of non-destructive 3D imaging. In this pilot study, we hypothesise noticeable variations in the LCN caused by altered chemical stimuli introduced by the PEO-coating.Utilising synchrotron-based transmission X-ray microscopy, we have characterised morphological LCN differences around uncoated and PEO-coated WE43 screws implanted into sheep bone. Bone specimens were explanted after 4, 8, and 12 weeks and regions near the implant surface were prepared for imaging. Findings from this investigation indicate that the slower degradation of PEO-coated WE43 induces healthier lacunar shapes within the LCN. However, the stimuli perceived by the uncoated material with higher degradation rates induces a greater connected LCN better prepared for bone disturbance. Keywords:nanotomography, lacuno-canalicular network, Bone, magnesium, biodegradable implants Affiliations:
| ||||||||||||||||||||||||||||||||||||||||||||||
2. | Sommer N.♦, Hirzberger D.♦, Paar L.♦, Berger L.♦, Ćwieka H., Schwarze U.♦, Herber V.♦, Okutan B.♦, Bodey A.♦, Willumeit-Römer R.♦, Zeller-Plumhoff B.♦, Löffler J.♦, Weinberg A.♦, Implant degradation of low-alloyed Mg-Zn-Ca in osteoporic, old and juvenile rats, Acta Biomaterialia, Acta Biomaterialia, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2022.05.041, Vol.147, pp.427-438, 2022 Abstract: Implant removal is unnecessary for biodegradable magnesium (Mg)-based implants and, therefore, the related risk for implant-induced fractures is limited. Aging, on the other hand, is associated with low bone-turnover and decreased bone mass and density, and thus increased fracture risk. Osteoporosis is accompanied by Mg deficiency, therefore, we hypothesized that Mg-based implants may support bone formation by Mg2+ ion release in an ovariectomy-induced osteoporotic rat model. Hence, we investigated osseointegration and implant degradation of a low-alloyed, degrading Mg–Zn–Ca implant (ZX00) in ovariectomy-induced osteoporotic (Osteo), old healthy (OH), and juvenile healthy (JH) groups of female Sprague Dawley rats via in vivo micro-computed tomography (µCT). For the Osteo rats, we demonstrate diminished trabecular bone already after 8 weeks upon ovariectomy and significantly enhanced implant volume loss, with correspondingly pronounced gas formation, compared to the OH and JH groups. Sclerotic rim development was observed in about half of the osteoporotic rats, suggesting a prevention from foreign-body and osteonecrosis development. Synchrotron radiation-based µCT confirmed lower bone volume fractions in the Osteo group compared to the OH and JH groups. Qualitative histological analysis additionally visualized the enhanced implant degradation in the Osteo group. To date, ZX00 provides an interesting implant material for young and older healthy patients, but it may not be of advantage in pharmacologically untreated osteoporotic conditions. Keywords:Magnesium-based implants, Osteoporosis, Degradation, Histology, Micro-computed tomography, Synchrotron radiation Affiliations:
| ||||||||||||||||||||||||||||||||||||||||||||||
3. | Marek R.♦, Ćwieka H., Donouhue N.♦, Holweg P.♦, Moosmann J.♦, Beckmann F.♦, Brcic I.♦, Schwarze U. Y.♦, Iskhakova K.♦, Chaabane M.♦, Sefa S.♦, Zeller-Plumhoff B.♦, Weinberg A.♦, Willumeit-Römer R.♦, Sommer N.♦, Degradation behavior and osseointegration of Mg-Zn-Ca screws in different bone regions of growing sheep, regenerative biomaterials, ISSN: 2056-3418, DOI: 10.1093/rb/rbac077, Vol.rbac077, pp.26-60, 2022 Abstract: Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone-interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.5 Ca, in wt%) and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae. The implant degradation and osseointegration were assessed in vivo and ex vivo after 4, 6 and 12 weeks, using a combination of clinical computed tomography (cCT), medium-resolution micro CT (µCT) and high-resolution synchrotron radiation µCT (SRµCT). Implant volume loss, gas formation, and bone growth were evaluated for both implantation sites and each bone region independently. Additionally, histological analysis of bone growth was performed on embedded hard-tissue samples. We demonstrate that in all cases, the degradation rate of ZX00-implants ranges between 0.23-0.75 mm/year. The highest degradation rates were found in the epiphysis. Bone-to-implant-contact varied between the time points and bone types for both materials. Mostly, bone-volume-to-total-volume was higher around Ti-implants. However, we found an increased cortical thickness around the ZX00-screws when compared to the Ti-screws. Our results showed the suitability of ZX00-screws for implantation into the distal meta- and epiphysis Keywords:Biodegradable implants,Magnesium-based alloys,Computed tomography,Mg-Zn-Ca,Sheep,Histology Affiliations:
| ||||||||||||||||||||||||||||||||||||||||||||||
4. | Zeller-Plumhoff B.♦, Gile M.♦, Priebe M.♦, Słomińska H., Boll B.♦, Wiese B.♦, Würger T.♦, Willumeit-Römer R.♦, Horst Meißner R.♦, Exploring key ionic interactions for magnesium degradation in simulated body fluid – a data-driven approach, Corrosion Science, ISSN: 0010-938X, DOI: 10.1016/j.corsci.2021.109272, Vol.182, pp.1-109272-13, 2021 Abstract: We have studied the degradation of pure magnesium wire in simulated body fluid and its subsets under physiological conditions to enable the prediction of the degradation rate based on the medium's ionic composition. To this end, micro-computed tomography and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used, followed by a tree regression analysis. A non-linear relationship was found between degradation rate and the precipitation of calcium salts. The mean absolute error for predicting the degradation rate was 1.35 mm/yr. This comparatively high value indicates that ionic interactions were exceedingly complex or that an unknown parameter determining the degradation may exist. Keywords:magnesium degradation, simulated body fluid, MicroCT, tree regression Affiliations:
| ||||||||||||||||||||||||||||||||||||||||||||||
5. | Meyer S.♦, Wolf A.♦, Sanders D.♦, Iskhakova K.♦, Ćwieka H., Bruns S.♦, Flenner S.♦, Greving I.♦, Hagemann J.♦, Willumeit-Römer R.♦, Wiese B.♦, Zeller-Plumhoff B.♦, Degradation analysis of thin Mg-xAg wires using X-ray near-field holotomography, Metals, ISSN: 2075-4701, DOI: 10.3390/met11091422, Vol.11, No.9, pp.1422-1-12, 2021 Abstract: Magnesium–silver alloys are of high interest for the use as temporary bone implants due to their antibacterial properties in addition to biocompatibility and biodegradability. Thin wires in particular can be used for scaffolding, but the determination of their degradation rate and homogeneity using traditional methods is difficult. Therefore, we have employed 3D imaging using X-ray near-field holotomography with sub-micrometer resolution to study the degradation of thin (250 μm diameter) Mg-2Ag and Mg-6Ag wires. The wires were studied in two states, recrystallized and solution annealed to assess the influence of Ag content and precipitates on the degradation. Imaging was employed after degradation in Dulbecco’s modified Eagle’s medium and 10% fetal bovine serum after 1 to 7 days. At 3 days of immersion the degradation rates of both alloys in both states were similar, but at 7 days higher silver content and solution annealing lead to decreased degradation rates. The opposite was observed for the pitting factor. Overall, the standard deviation of the determined parameters was high, owing to the relatively small field of view during imaging and high degradation inhomogeneity of the samples. Nevertheless, Mg-6Ag in the solution annealed state emerges as a potential material for thin wire manufacturing for implants. Keywords:X-ray computed tomography, magnesium-silver alloy, wire, degradation, near-field holotomography Affiliations:
| ||||||||||||||||||||||||||||||||||||||||||||||
6. | Zeller-Plumhoff B.♦, Robisch A.L.♦, Pelliccia D.♦, Longo E.♦, Słomińska H.♦, Hermann A.♦, Krenkel M.♦, Storm M.♦, Estrin Y.♦, Willumeit-Römer R.♦, Salditt T.♦, Orlov D.♦, Nanotomographic evaluation of precipitate structure evolution in a Mg–Zn–Zr alloy during plastic deformation, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-020-72964-x, Vol.10, pp.16101-1-9, 2020 Abstract: Magnesium and its alloys attract increasingly wide attention in various fields, ranging from transport to medical solutions, due to their outstanding structural and degradation properties. These properties can be tailored through alloying and thermo-mechanical processing, which is often complex and multi-step, thus requiring in-depth analysis. In this work, we demonstrate the capability of synchrotron-based nanotomographic X-ray imaging methods, namely holotomography and transmission X-ray microscopy, for the quantitative 3D analysis of the evolution of intermetallic precipitate (particle) morphology and distribution in magnesium alloy Mg–5.78Zn-0.44Zr subjected to a complex multi-step processing. A rich history of variation of the intermetallic particle structure in the processed alloy provided a testbed for challenging the analytical capabilities of the imaging modalities studied. The main features of the evolving precipitate structure revealed earlier by traditional light and electron microscopy methods were confirmed by the 3D techniques of synchrotron-based X-ray imaging. We further demonstrated that synchrotron-based X-ray imaging enabled uncovering finer details of the variation of particle morphology and number density at various stages of processing—above and beyond the information provided by visible light and electron microscopy. Affiliations:
|