Partner: N.K. Medvedchuk


Recent publications
1.Tarelnyk V., Haponova O., Konoplianchenko V., Tarelnyk N., Dumanchuk M., Mikulina M., Pirogov V., Gorovoy S., Medvedchuk N., Development Directed Choice System of the Most Efficient Technology for Improving Sliding Bearings Babbitt Covers Quality. Pt. 1. Peculiarities of Babbitt Coating Technologies, Metallofizika i Noveishie Tekhnologii, ISSN: 1024-1809, DOI: 10.15407/mfint.44.11.1475, Vol.44, No.11, pp.1475-1493, 2022
Abstract:

The article substantiates the importance and relevance of increasing problem of the performance and service life of babbitt sliding bearings (SB), which are the rotors supports of a large number of centrifugal pumps, compressors, turbines and other dynamic equipment operating at high operating parameters (speeds, loads and temperatures), as well as in conditions of corrosive, abrasive and other types of working environment’s influence. The analysis of the babbitt SBs production technology and operating conditions showed that the reason for the decrease in their durability are factors that are formed both at the stage of manufacture and during operation. SB failure under normal operating conditions is a consequence of wear various types: cavitation, abrasive wear, damage due to plastic deformations, fatigue damage, etc. The antifriction layer wear resistance depends on the mode of operation and design of the bearing, the physical properties of the connection between the layer and the base, the rigidity of the shaft and the bed under the bearings. As established, the bearing anti-friction layer quality must be evaluated according to the following criteria: adhesion strength of the coating to the base, cohesive strength of the anti-friction layer, porosity, and homogeneity of the structure. As established, during the production of SBs, the formation by the method of electrospark alloying (ESA) of a copper intermediate layer, firmly bonded with steel substrate, and tin layer (formation of solid substitution solutions) and babbitt provides a stronger (by 35%) of adhesion, compared to traditional technology (steel 20 + babbitt), steel substrate with babbitt, as well as more intensive removal of heat from the friction zone. As determined, a new technology in which all operations are carried out by the ESA method can be a reserve for improving the babbitt coatings formation quality, which significantly affects the durability of the SB. As determined, in order to determine a more rational technology for applying babbitt coatings, it is necessary to develop a physically based mathematical model that relates the wear of a certain amount of babbitt to the frictional work spent on it.

Keywords:

sliding bearing, babbitt, coating, wear, structure, transition layer, adhesion strength, electrospark alloying, mathematical model

Affiliations:
Tarelnyk V.-Sumy National Agrarian University (UA)
Haponova O.-IPPT PAN
Konoplianchenko V.-other affiliation
Tarelnyk N.-Sumy National Agrarian University (UA)
Dumanchuk M.-other affiliation
Mikulina M.-other affiliation
Pirogov V.-other affiliation
Gorovoy S.-other affiliation
Medvedchuk N.-other affiliation