Partner: Martin Řehoř |
|
Recent publications
1. | Průša V.♦, Řehoř M.♦, Tůma K., Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK ZAMP, ISSN: 0044-2275, DOI: 10.1007/s00033-017-0768-x, Vol.68, No.24, pp.1-13, 2017 Abstract: The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207–221, 2016), we show how to use the theory in the analysis of response of nonlinear spring–dashpot and spring–dashpot–mass systems. Keywords:mechanical systems, nonlinear ordinary differential equations, jump discontinuities, colombeau algebra Affiliations:
| ||||||||||
2. | Řehoř M.♦, Průša V.♦, Tůma K., On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting, PHYSICS OF FLUIDS, ISSN: 1070-6631, DOI: 10.1063/1.4964662, Vol.28, No.10, pp.103102-1-25, 2016 Abstract: Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting. Keywords:Lubricating, viscoelastic fluid, Maxwell Affiliations:
|