Partner: Lami Ludovico


Recent publications
1.Ludovico L., Regula B., Streltsov A., No-go theorem for entanglement distillation using catalysis, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.109.L050401, Vol.109, pp.L050401-1-L050401-6, 2024
Abstract:

The use of ancillary quantum systems known as catalysts is known to be able to enhance the capabilities of entanglement transformations under local operations and classical communication. However, the limits of these advantages have not been determined and in particular it is not known if such assistance can overcome the known restrictions on asymptotic transformation rates—notably the existence of bound entangled (undistillable) states. Here we establish a general limitation on entanglement catalysis: we show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state with positive partial transpose, even if the catalyst may become correlated with the system of interest and even under permissive choices of free operations. This precludes the possibility that catalysis may make entanglement theory asymptotically reversible. Our methods are based on asymptotic bounds for the distillable entanglement and entanglement cost assisted by correlated catalysts.

Affiliations:
Ludovico L.-other affiliation
Regula B.-other affiliation
Streltsov A.-IPPT PAN
2.Regula B., Ludovico L., Streltsov A., Nonasymptotic assisted distillation of quantum coherence, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.052329, Vol.98, pp.052329-1-052329-8, 2018
Abstract:

We characterize the operational task of environment-assisted distillation of quantum coherence under different sets of free operations when only a finite supply of copies of a given state is available. We first evaluate the one-shot assisted distillable coherence exactly, and introduce a semidefinite programming bound on it in terms of a smooth entropic quantity. We prove the bound to be tight for all systems in dimensions 2 and 3, which allows us to obtain computable expressions for the one-shot rate of distillation, establish an analytical expression for the best achievable fidelity of assisted distillation for any finite number of copies, and fully solve the problem of asymptotic zero-error assisted distillation for qubit and qutrit systems. Our characterization shows that all
relevant sets of free operations in the resource theory of coherence have exactly the same power in the task of one-shot assisted coherence distillation, and furthermore resolves a conjecture regarding the additivity of coherence of assistance in dimension 3

Affiliations:
Regula B.-other affiliation
Ludovico L.-other affiliation
Streltsov A.-other affiliation