Partner: Jan Adamowicz |
|
Recent publications
1. | Jundziłł A.♦, Pokrywczyńska M.♦, Adamowicz J.♦, Kowalczyk T., Nowacki M.♦, Bodnar M.♦, Marszałek A.♦, Frontczak-Baniewicz M.M.♦, Mikułowski G., Kloskowski T.♦, Gatherwright J.♦, Drewa T.♦, Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering, Medical Science Monitor, ISSN: 1643-3750, DOI: 10.12659/MSM.899659, Vol.23, pp.1540-1551, 2017 Abstract: BACKGROUND: Electrospun nanofibers have widespread putative applications in the field of regenerative medicine and tissue engineering. When compared to naturally occurring collagen matrices, electrospun nanofiber scaffolds have two distinct advantages: they do not induce a foreign body reaction and they are not at risk for biological contamination. However, the exact substrate, structure, and production methods have yet to be defined. MATERIAL AND METHODS: In the current study, tubular-shaped poly(L-lactide-co-caprolactone) (PLCL) constructs produced using electrospinning technology were evaluated for their potential application in the field of tissue regeneration in two separate anatomic locations: the skin and the abdomen. The constructs were designed to have an internal diameter of 3 mm and thickness of 200 μm. Using a rodent model, 20 PLCL tubular constructs were surgically implanted in the abdominal cavity and subcutaneously. The constructs were then evaluated histologically using electron microscopy at 6 weeks post-implantation. RESULTS: Histological evaluation and analysis using scanning electron microscopy showed that pure scaffolds by themselves were able to induce angiogenesis after implantation in the rat model. Vascularization was observed in both tested groups; however, better results were obtained after intraperitoneal implantation. Formation of more and larger vessels that migrated inside the scaffold was observed after implantation into the peritoneum. In this group no evidence of inflammation and better integration of scaffold with host tissue were noticed. Subcutaneous implantation resulted in more fibrotic reaction, and differences in cell morphology were also observed between the two tested groups. CONCLUSIONS: This study provides a standardized evaluation of a PLCL conduit structure in two different anatomic locations, demonstrating the excellent ability of the structure to achieve vascularization. Functional, histological, and mechanical data clearly indicate prospective clinical utilization of PLCL in critical size defect regeneration. Keywords:Polymers, Regenerative medicine, Tissue Engineering, Tissue Scaffolds, Urinary Diversion Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. | Adamowicz J.♦, Pokrywczyńska M.♦, Tworkiewicz J.♦, Kowalczyk T., van Breda S.V.♦, Tyloch D.♦, Kloskowski T.♦, Bodnar M.♦, Skopińska-Wiśniewska J.♦, Marszałek A.♦, Frontczak-Baniewicz M.M.♦, Kowalewski T.A., Drewa T.♦, New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0146012, Vol.11, No.1, pp.e0146012-1-20, 2016 Abstract: Objective Bladder, Smooth muscles, Muscle regeneration, Bionanotechnology, Renal system, Urothelium, Urology, Nanomaterials Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. | Pokrywczyńska M.♦, Jundziłł A.♦, Adamowicz J.♦, Kowalczyk T., Warda K.♦, Rasmus M.♦, Buchholz Ł.♦, Krzyżanowska S.♦, Nakielski P., Chmielewski T., Bodnar M.♦, Marszałek A.♦, Dębski R.♦, Frontczak-Baniewicz M.M.♦, Mikułowski G., Nowacki M.♦, Kowalewski T.A., Drewa T.♦, Is the Poly (L- Lactide- Co– Caprolactone) Nanofibrous Membrane Suitable for Urinary Bladder Regeneration?, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0105295, Vol.9, No.8, pp.105295-1-12, 2014 Abstract: The purpose of this study was to compare: a new five-layered poly (L–lactide–co–caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L–lactide–co–caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×106 cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×106ADSCs; (II) SIS+ 3×106ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson's trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L–lactide–co–caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold. Keywords:urinary bladder regeneration, electrospinning Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
4. | Adamowicz J.♦, Kowalczyk T., Drewa T.♦, Tissue engineering of urinary bladder – current state of art and future perspectives, Central European Journal of Urology, ISSN: 2080-4806, DOI: 10.5173/ceju.2013.02.art23, Vol.66, pp.202-206, 2013 Abstract: Introduction. stem cells, bladder regeneration, tissue engineering Affiliations:
|
Conference abstracts
1. | Kowalczyk T., Niemczyk B., Kloskowski T.♦, Jundziłł A.♦, Adamowicz J.♦, Nowacki M.♦, Pokrywczyńska M.♦, Noszczyk B.♦, Drewa T.♦, Investigation of the in vivo behavior of membranes made of electrospun micro and nanofibers implanted on an animal model, CNM 2019, 6th CONFERENCE ON NANO- AND MICROMECHANICS, 2019-07-03/07-05, Rzeszów (PL), pp.137-139, 2019 Keywords: electrospinning, microfibers, nanofibers, in vivo, animal model Affiliations:
| |||||||||||||||||||||||||||||||
2. | Kowalczyk T., Cwiek K.♦, Urbanek O., Kloskowski T.♦, Pokrywczyńska M.♦, Jundziłł A.♦, Adamowicz J.♦, Zabost E.♦, Noszczyk B.♦, Drewa T.♦, Electrospun micro and nanofibers applied for animal models in urology and wound dressing. Potential applications in cancer treatment, 2nd INTERNATIONAL CONFERENCE ON BIO-BASED POLYMERS AND COMPOSITES, 2014-08-24/08-28, Visegrad (HU), pp.24, 2015 Abstract: We used the principles of electrospinning to produce materials for applications in regenerative medicine of urinary bladder wall, ureter, wound dressing and potential applications in cancer therapy. Our research is based on biodegradable polymers produced by ring-opening polymerization. Scaffolds of poly(L-lactide-co-caprolactone) (PLCL) gradually degrade leaving no artificial material behind to be replaced by natural extracellular collagen matrix. We formed flat membranes of micro- and nanofibers to carry out regeneration of urinary bladder wall as animal model of cancer treatment. Grafts were tested for biocompatibility and aimed for guided cell growth, yet we were unsuccessful in mechanical compliance of nanomaterial and reconstructed tissue. We tested tubular scaffolds made of nanofibers aimed for ureter tissue engineering. We found stem cells seeding unnecessary. The results of nanomaterial implantation on animal model were better than for collagen matrices. Animal model was also tested for use of nanofibers of human serum albumin as wound dressing. The native structure of the protein was retained to maintain its anti-adhesive properties, despite poor mechanical characteristics. Nanomaterial caused no inflammation and was resorbed during 16 days. Last application of presented materials was targeted drug delivery system made of PLCL nanofibers. Release of anticancer drug complexed with nanoparticles is to be triggered by tumor cells. Such nanomaterial is potential drug delivery system. Acknowledgements: The authors wishes to thank for the cooperation: T. Chmielewski, P. Nakielski, K. Zembrzycki, G. Mikulowski and prof. T. A. Kowalewski from IPPT PAN. The project was partially supported by the National Centre for Research and Development. Grant No. STRATEGMED1/235368/8/NCBR/2014. Keywords:electrospinning, nanofibers, regenerative medicine, wound dressing, urology, biodegradable polymers, animal model. Affiliations:
|