Partner: A. Yarin |
|
Recent publications
1. | Silva M.J.♦, Dias Y.J.♦, Zaszczyńska A., Kołbuk-Konieczny D., Kowalczyk T., Sajkiewicz P. Ł., Yarin A.♦, Three-phase bio-nanocomposite natural-rubber-based microfibers reinforced with cellulose nanowhiskers and 45S5 bioglass obtained by solution blow spinning, JOURNAL OF APPLIED POLYMER SCIENCE, ISSN: 0021-8995, DOI: 10.1002/app.54661, Vol.140, No.45, pp.e54661-1-18, 2023 Abstract: Aiming at biomedical applications, the present work developed a new bio-nanocomposite fibrous mat based on natural rubber (NR) reinforced with 45S5 bioglass particles (BG) and cellulose nanowhiskers (CNW), which reveals excellent mechanical properties, good biocompatibility and bioactivity properties. Analyses of the specimens were conducted by means of morphological observa-tions (SEM) and thermal analysis (TG/DTG), as well as mechanical tests used to verify the effect of the incorporation of BG particles and CNW on the ultimate properties of these flexible NR-CWN/BG fibrous membranes. An SEM analysis revealed that all filaments possessed a ribbon-like morphology, with increasing diameters as the BG concentration increased. This likely results from an increased viscosity of the solution used for fiber blowing. In comparison with neat NR fibrous mats, the ultimate mechanical properties of bio-nanocomposites were sig-nificantly improved due to the presence of CNW and BG particles dispersed in the NR matrix. According to the TG/DTG analysis, the specimens' thermal stability was unaffected by the high BG content, and the thermal profiles were similar, with isoprene chains decomposition of the NR occurring between 350 and 450°C. In-vitro analysis on fibroblasts confirmed that the bio-nanocomposite fibrous mats are noncytotoxic. It was found that fibrous mats enhanced cellular growth and hold great promise for tissue engineering applications. Keywords:bioactive particles,cellulose nanowhiskers,fibrous mat bio-nanocomposite,natural rubber Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
2. | Silva M.J.♦, Dias Y.J.♦, Zaszczyńska A., Rojas Robles J.♦, Abiade J.♦, Kowalczyk T., Kołbuk-Konieczny D., Sajkiewicz P., Yarin A.L.♦, Biocomposite-based fibrous scaffolds of natural rubber/polyhydroxybutyrate blend reinforced with 45S5 bioglass aiming at biomedical applications, Polymer Composites, ISSN: 0272-8397, DOI: 10.1002/pc.27839, pp.1-21, 2023 Abstract: The solution blow spinning technique was used to fabricate a new biocomposite fibrous mat consisting of natural rubber (NR) and polyhydroxybutyrate (PHB) bioblend, with various loads of 45S5 bioglass (BG) particles. According to SEM analysis, NR fibers exhibited ribbon-like morphologies, whereas the addition of PHB resulted in improved fiber formation and a reduction in their diameter. In NR-PHB/BG biocomposites with varying BG loadings, typical thermal degradation events of PHB (stage i) and NR (stage ii) were observed. In comparison with pure PHB, the TG/DTG curves of NR-PHB/BG specimens revealed a lower stage i degradation peak. Such an outcome is possibly due to the fact that PHB in the NR-PHB fibers is located predominantly at the surface, that is, PHB is more susceptible to thermal degradation. The NR-PHB/BG biocomposite possessed an increased stiffness due to the addition of PHB and BG, resulting in an increased stress and a decreased strain at rupture compared to the pure NR and NR-PHB mats. DMA analysis revealed two well-defined regions, above and below the glass transition temperature (Tg), for the storage modulus (E') of the NR-PHB/BG specimens. The values of E' were in both regions for NR-PHB/BG specimens increased at higher BG content. The measured tanδ = E″/E' was used to determine the Tg value for all specimens, with Tg found to be in the −49 to −46°C range. Finally, NR-PHB/BG biocomposite fibrous were proven noncytotoxic by in-vitro testing on fibroblasts. These biocomposites enhanced cell growth, holding great promise for tissue engineering applications. Keywords:45S5 bioglass, biocomposite fibrous mat, biomedical applications, natural rubber, polyhydroxybutyrate, solution blow spinning Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
3. | Haghighat Bayan M.A., Dias Yasmin J.♦, Rinoldi C., Nakielski P., Rybak D., Truong Yen B.♦, Yarin A.♦, Pierini F., Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications, Journal of Polymer Science, ISSN: 2642-4169, DOI: 10.1002/pol.20220747, Vol.61, No.7, pp.521-533, 2023 Abstract: Over the last few years, traditional drug delivery systems (DDSs) have been transformed into smart DDSs. Recent advancements in biomedical nanotech-nology resulted in introducing stimuli-responsiveness to drug vehicles. Nano- electrospun core-shell nanofibers,NIR-light activation,on-demand drug release,plasmonic nanoparticles,stimuli-responsive nanomaterials Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
4. | Dias Y.J.♦, Robles J.R.♦, Sinha-Ray S.♦, Abiade J.♦, Pourdeyhimi B.♦, Niemczyk-Soczyńska B., Kołbuk D., Sajkiewicz P., Yarin A.L.♦, Solution-blown poly(hydroxybutyrate) and ε-poly-l-lysine submicro- and microfiber-based sustainable nonwovens with antimicrobial activity for single-use applications, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.1c00594, Vol.7, No.8, pp.3980-3992, 2021 Abstract: Antimicrobial nonwovens for single use applications (e.g., diapers, sanitary napkins, medical gauze, etc.) are of utmost importance as the first line of defense against bacterial infections. However, the utilization of petrochemical nondegradable polymers in such nonwovens creates sustainability-related issues. Here, sustainable poly(hydroxybutyrate) (PHB) and ε-poly-l-lysine (ε-PLL) submicro- and microfiber-based antimicrobial nonwovens produced by a novel industrially scalable process, solution blowing, have been proposed. In such nonwovens, ε-PLL acts as an active material. In particular, it was found that most of ε-PLL is released within the first hour of deployment, as is desirable for the applications of interest. The submicro- and microfiber mat was tested against C. albicans and E. coli, and it was found that ε-PLL-releasing microfibers result in a significant reduction of bacterial colonies. It was also found that ε-PLL-releasing antimicrobial submicro- and microfiber nonwovens are safe for human cells in fibroblast culture. Mechanical characterization of these nonwovens revealed that, even though they are felt as soft and malleable, they possess sufficient strength, which is desirable in the end-user applications. Keywords:PHB submicro- and microfibers, antimicrobial nonwovens, ε-PLL release, E. coli, C. albicans Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
5. | Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., De Sio L.♦, Urbanek O., Zembrzycki K., Pruchniewski M.♦, Lanzi M.♦, Salatelli E.♦, Calogero A.♦, Kowalewski T.A., Yarin A.L.♦, Pierini F., Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-Infrared light-driven biomedical applications, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c13266, Vol.12, No.49, pp.54328-54342, 2020 Abstract: Multifunctional nanomaterials with the ability torespond to near-infrared (NIR) light stimulation are vital for thedevelopment of highly efficient biomedical nanoplatforms with apolytherapeutic approach. Inspired by the mesoglea structure ofjellyfish bells, a biomimetic multifunctional nanostructured pillowwith fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatformwith several hierarchical levels designed to generate a series ofcontrolled, rapid, and reversible cascade-like structural changesupon NIR light irradiation. The mechanical contraction of thenanostructured platform, resulting from the increase of temper-ature to 42°C due to plasmonic hydrogel−light interaction, causesa rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. Themutual effects of the rise in temperature and waterflow stimulate the release of molecules from the nanofibers. To expand thepotential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level forperforming photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates theefficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirmsthe pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy. Keywords:bioinspired materials, NIR-light responsive nanomaterials, multifunctional platforms, electrospun nanofibers, plasmonic hydrogel, photothermal-based polytherapy, on-demand drug delivery Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
6. | Sankaran A.♦, Pawłowska S., Pierini F., Kowalewski T.A., Yarin A.L.♦, Dynamics of electrospun hydrogel filaments in oscillatory microchannel flows: a theoretical and experimental approach, PHYSICS OF FLUIDS, ISSN: 1070-6631, DOI: 10.1063/5.0011005, Vol.32, No.7, pp.072008-1-13, 2020 Abstract: The dynamics of highly flexible micro- and nano-filaments are important to a variety of biological, medical, and industrial problems. The filament configuration variation and cross-stream migration in a microchannel are affected by thermal fluctuations in addition to elastic and viscous forces. Here, hydrogel nano-filaments with small bending Young's moduli are utilized to elucidate the transitional behavior of elastic Brownian filaments in an oscillatory microchannel flow. A numerical model based on chain elastic dumbbells similar to the Rouse-Zimm model accounting for elastic, viscous, and random Brownian forces is proposed and implemented. In addition, a theoretical model to describe the average orientation–deformation tensor evolution for an ensemble of filaments in an oscillatory flow is proposed. The results are compared with the evolution observed in the experiments. Affiliations:
| |||||||||||||||||||||||||||||||||||||||||||
7. | Yarin A.♦, Kowalewski T.A., Hiller W.J.♦, Koch St.♦, Distribution of particles suspended in convective flow in differentially heated cavity, PHYSICS OF FLUIDS, ISSN: 1070-6631, DOI: 10.1063/1.868913, Vol.8, No.5, pp.1130-1140, 1996 Abstract: Our aim is to explore, both experimentally and theoretically, the cumulative effects of small particle–liquid density difference, where the particles are used as tracers in recirculating flow. As an example we take a flow field generated in a differentially heated cavity. The main flow structure in such a cavity consists in one or two spiraling motions. Long‐term observations of such structures with the help of tracers (small particles) indicated that accumulation of the particles may set in at some flow regions. For theoretical insight into the phenomenon, a simple analytical model of recirculating (rotating) flow was studied. It was assumed that particles are spherical and rigid, and their presence does not affect the flow field. The particle Reynolds number is negligibly small, hence only the effects of particle–liquid density difference are of importance. Besides buoyancy, the effects of Saffman’s force and the inertial forces are also taken into account when calculating particle trajectories. Both cases were analyzed, particles with density slightly higher and lower than the fluid. It was found that in our case the inertial forces are egligible. In the numerical experiment trajectories of particles were investigated. The particles were allocated at random in the flow field obtained by numerical solution of the natural convection in the differentially heated cavity. In the experimental part, behavior of a dilute particle suspension in the convective cell was explored. In the model‐analytical study of a simple spiraling motion, it was found that due to the interaction of the recirculating convective flow field and the gravity‐buoyancy force, the particles may be trapped in some flow regions, whereas the rest of the flow field becomes particle‐free. This prediction agrees fairly well with the numerical and experimental findings. Affiliations:
|
List of recent monographs
1. 727 | Yarin A.L.♦, Pierini F., Zussman E.♦, Lauricella M.♦, Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers, Springer Cham, pp.-, 2024 |
Conference abstracts
1. | Pierini F., Nakielski P., Pawłowska S., Rinoldi C., Ziai Y., Urbanek-Świderska O., De Sio L.♦, Calogero A.♦, Lanzi M.♦, Zembrzycki K., Pruchniewski M.♦, Salatelli E.♦, Kowalewski T.A., Yarin A.♦, Nature-inspired smart drug delivery platforms based on electrospun nanofibers and plasmonic hydrogels for near-infrared light-controlled polytherapy, Polymer Connect, Polymer Science and Composite Materials Conference, 2020-02-26/02-28, LISBON (PT), pp.7, 2020 |