Michał Dyzma, PhD |
|
Doctoral thesis
2016-03-08 | Modelowanie oscylacji stężeń jonów wapniowych w komórkach eukariotycznych z uwzględnieniem obszarów bezpośredniego kontaktu pomiędzy mitochondriami a retikulum endoplazmatycznym (IBIB PAN)
| 1246 |
Recent publications
1. | Szopa P.♦, Dyzma M., Kaźmierczak B., Membrane associated complexes in calcium dynamics modelling, PHYSICAL BIOLOGY, ISSN: 1478-3967, DOI: 10.1088/1478-3975/10/3/035004, Vol.10, pp.035004-1-13, 2013 Abstract: Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca2+ regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway. Affiliations:
| |||||||||||||
2. | Dyzma M., Szopa P., Kaźmierczak B., Membrane associated complexes: new approach to calcium dynamics modeling, MATHEMATICAL MODELLING OF NATURAL PHENOMENA, ISSN: 0973-5348, DOI: 10.1051/mmnp/20127608, Vol.7, pp.32-50, 2012 Abstract: Mitochondria are one of the most important organelles determining Ca2+ regulatory pathway in the cell. Recent experiments suggested the existence of cytosolic microdomains with locally elevated calcium concentration (CMDs) in the nearest vicinity of the outer mitochondrial membrane (OMM). These intermediate physical connections between endoplasmic reticulum (ER) and mitochodria are called MAM (mitochondria-associated ER membrane) complexes. Ca2+ signaling, mitochodrial Ca2+ transport, MAMs, three pool model, bistability, apoptosis, Affiliations:
| |||||||||||||
3. | Dyzma M.♦, Boudjeltia K.Z.♦, Faraut B.♦, Kerkhofs M.♦, Neuropeptide Y and sleep, SLEEP MEDICINE REVIEWS, ISSN: 1087-0792, DOI: 10.1016/j.smrv.2009.09.001, Vol.14, pp.161-165, 2010 Abstract: Neuropeptide Y (NPY), a 36-amino-acid peptide from the pancreatic polypeptide family, is one of the more abundant peptides in the central nervous system. It acts as a neurohormone and as a neuromodulator. NPY is widely distributed in the brain, particularly the hypothalamus, the amygdala, the locus coeruleus and the cerebral cortex. At least six NPY receptors subtypes have been identified. NPY is involved in the regulation of several physiological functions such as food intake, hormonal release, circadian rhythms, cardiovascular disease, thermoregulation, stress response, anxiety and sleep. Sleep promoting effects of NPY as well as wakefulness effects of NPY were found in animals, depending on the site of injection as well as on the functional state of the structure. In humans, NPY was found to have hypnotic properties, possibly acting as a physiological antagonist of corticotropin-releasing hormone (CRH). In conclusion, NPY participates in sleep regulation in humans, particularly in the timing of sleep onset and may as such play a role in the integration of sleep regulation, food intake and metabolism. Keywords:NPY, CRH, Sleep regulation, Basal Forebrain (BF) Affiliations:
| |||||||||||||
4. | Kaźmierczak B., Dyzma M., Mechanical effects coupled with calcium waves, ARCHIVES OF MECHANICS, ISSN: 0373-2029, Vol.62, No.2, pp.121-133, 2010 Abstract: In the paper we find explicit formulae for heteroclinic travelling wave solutions in the system of equations describing the dynamics of cytosolic calcium concentration and the accompanying mechanical phenomena. Keywords:calcium waves, reaction-diffusion systems, mechanochemical coupling Affiliations:
|
Conference papers
1. | Dyzma M., Szopa P., Kaźmierczak B., Membrane associated complexes: new approach to calcium dynamics modeling, 16th National Conference on Applications of Mathematics in Biology and Medicine, 2010-09-14/09-18, Krynica (PL), pp.35-41, 2010 |