1. | Bagnall J.♦, Boddington C.♦, England H.♦, Brignall R.♦, Downton P.♦, Alsoufi Z.♦, Boyd J.♦, Rowe W.♦, Bennett A.♦, Walker C.♦, Adamson A.♦, Patel Nisha M. X.♦, O’Cualain R.♦, Schmidt L.♦, Spiller David G.♦, Jackson Dean A.♦, Müller W.♦, Muldoon M.♦, White Michael R. H.R.♦, Paszek P.♦, Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the propagation of macrophage activation, Science Signaling, ISSN: 1945-0877, DOI: 10.1126/scisignal.aaf3998, Vol.11, No.540, pp.1-15, 2018Abstract:Toll-like receptor (TLR) signaling regulates macrophage activation and effector cytokine propagation in the constrained environment of a tissue. In macrophage populations, TLR4 stimulates the dose-dependent transcription of nuclear factor κB (NF-κB) target genes. However, using single-RNA counting, we found that individual cells exhibited a wide range (three orders of magnitude) of expression of the gene encoding the proinflammatory cytokine tumor necrosis factor–α (TNF-α). The TLR4-induced TNFA transcriptional response correlated with the extent of NF-κB signaling in the cells and their size. We compared the rates of TNF-α production and uptake in macrophages and mouse embryonic fibroblasts and generated a mathematical model to explore the heterogeneity in the response of macrophages to TLR4 stimulation and the propagation of the TNF-α signal in the tissue. The model predicts that the local propagation of the TLR4-dependent TNF-α response and cellular NF-κB signaling are limited to small distances of a few cell diameters between neighboring tissue-resident macrophages. In our predictive model, TNF-α propagation was constrained by competitive uptake of TNF-α from the environment, rather than by heterogeneous production of the cytokine. We propose that the highly constrained architecture of tissues enables effective localized propagation of inflammatory cues while avoiding out-of-context responses at longer distances. Affiliations:Bagnall J. | - | other affiliation | Boddington C. | - | other affiliation | England H. | - | other affiliation | Brignall R. | - | other affiliation | Downton P. | - | other affiliation | Alsoufi Z. | - | other affiliation | Boyd J. | - | other affiliation | Rowe W. | - | other affiliation | Bennett A. | - | other affiliation | Walker C. | - | other affiliation | Adamson A. | - | other affiliation | Patel Nisha M. X. | - | other affiliation | O’Cualain R. | - | other affiliation | Schmidt L. | - | other affiliation | Spiller David G. | - | other affiliation | Jackson Dean A. | - | other affiliation | Müller W. | - | other affiliation | Muldoon M. | - | other affiliation | White Michael R. H.R. | - | University of Manchester
(GB) | Paszek P. | - | other affiliation |
| |
2. | Brignall R.♦, Cauchy P.♦, Bevington Sarah L.♦, Gorman B.♦, Pisco Angela O.♦, Bagnall J.♦, Boddington C.♦, Rowe W.♦, England H.♦, Rich K.♦, Schmidt L.♦, Dyer Nigel P.♦, Travis Mark A.♦, Ott S.♦, Jackson Dean A.♦, Cockerill Peter N.♦, Paszek P.♦, Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells, JOURNAL OF IMMUNOLOGY, ISSN: 0022-1767, DOI: 10.4049/jimmunol.1602033, Vol.199, No.8, pp.2652-2667, 2017Abstract:TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation. Affiliations:Brignall R. | - | other affiliation | Cauchy P. | - | other affiliation | Bevington Sarah L. | - | other affiliation | Gorman B. | - | other affiliation | Pisco Angela O. | - | other affiliation | Bagnall J. | - | other affiliation | Boddington C. | - | other affiliation | Rowe W. | - | other affiliation | England H. | - | other affiliation | Rich K. | - | other affiliation | Schmidt L. | - | other affiliation | Dyer Nigel P. | - | other affiliation | Travis Mark A. | - | other affiliation | Ott S. | - | other affiliation | Jackson Dean A. | - | other affiliation | Cockerill Peter N. | - | other affiliation | Paszek P. | - | other affiliation |
| |