Partner: Wioletta Czelejewska


Recent publications
1.Nakielski P., Rybak D., Jezierska-Woźniak K., Rinoldi C., Sinderewicz E., Staszkiewicz-Chodor J., Haghighat Bayan M.A., Czelejewska W., Urbanek-Świderska O., Kosik-Kozioł A., Barczewska M., Skomorowski M., Holak P., Lipiński S., Maksymowicz W., Pierini F., Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.3c11710, pp.1-16, 2023
Abstract:

Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but
limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the
safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(L-lactide-co-glycolide) and poly(L-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.

Keywords:

microscaffolds,cell carriers,injectable biomaterials,intervertebral disc,laser micromachining,electrospinning

Affiliations:
Nakielski P.-IPPT PAN
Rybak D.-IPPT PAN
Jezierska-Woźniak K.-other affiliation
Rinoldi C.-IPPT PAN
Sinderewicz E.-other affiliation
Staszkiewicz-Chodor J.-other affiliation
Haghighat Bayan M.A.-IPPT PAN
Czelejewska W.-other affiliation
Urbanek-Świderska O.-IPPT PAN
Kosik-Kozioł A.-IPPT PAN
Barczewska M.-University of Warmia and Mazury in Olsztyn (PL)
Skomorowski M.-other affiliation
Holak P.-other affiliation
Lipiński S.-other affiliation
Maksymowicz W.-University of Warmia and Mazury in Olsztyn (PL)
Pierini F.-IPPT PAN
2.Nakielski P., Rinoldi C., Pruchniewski M., Pawłowska S., Gazińska M., Strojny B., Rybak D., Jezierska-Woźniak K., Urbanek O., Denis P., Sinderewicz E., Czelejewska W., Staszkiewicz-Chodor J., Grodzik M., Ziai Y., Barczewska M., Maksymowicz W., Pierini F., Laser-assisted fabrication of injectable nanofibrous cell carriers, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202104971, Vol.18, No.2, pp.2104971-1-18, 2022
Abstract:

The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.

Affiliations:
Nakielski P.-IPPT PAN
Rinoldi C.-IPPT PAN
Pruchniewski M.-other affiliation
Pawłowska S.-IPPT PAN
Gazińska M.-other affiliation
Strojny B.-other affiliation
Rybak D.-IPPT PAN
Jezierska-Woźniak K.-other affiliation
Urbanek O.-IPPT PAN
Denis P.-IPPT PAN
Sinderewicz E.-other affiliation
Czelejewska W.-other affiliation
Staszkiewicz-Chodor J.-other affiliation
Grodzik M.-other affiliation
Ziai Y.-IPPT PAN
Barczewska M.-University of Warmia and Mazury in Olsztyn (PL)
Maksymowicz W.-University of Warmia and Mazury in Olsztyn (PL)
Pierini F.-IPPT PAN