Partner: Van Tan Tran


Recent publications
1.Yonas S., Gicha B.B., Adhikari S., Sabir F.K., Tran V.T., Nwaji N., Gonfa B.A., Teshome Tufa L., Electric-Field-Assisted Synthesis of Cu/MoS2 Nanostructures for Efficient Hydrogen Evolution Reaction, Micromachines, ISSN: 2072-666X, DOI: 10.3390/mi15040495, Vol.15, No.495, pp.1-13, 2024
Abstract:

Molybdenum sulfide–oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanos- tructure thin-film electrocatalyst directly onto nickel foam (NF) without a binder or template. The synthesized CMS nanostructures were characterized utilizing energy-ispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical methods. The XRD result revealed that the Cu metal coating on MS results in the creation of an extremely crys-talline CMS nanostructure with a well-defined interface. The hybrid nanostructures demonstrated
higher hydrogen production, attributed to the synergistic interplay of morphology and electron dis-tribution at the interface. The nanostructures displayed a significantly low overpotential of −149 mV at 10 mA cm−2 and a Tafel slope of 117 mV dec−1, indicating enhanced catalytic activity compared to pristine MoS2.This research underscores the significant enhancement of the HER performance and
conductivity achieved by CMS, showcasing its potential applications in renewable energy.

Keywords:

electrodeposition, hydrogen evolution reactions, catalytic activity, Cu/MoS2 nanostructures

Affiliations:
Yonas S.-other affiliation
Gicha B.B.-other affiliation
Adhikari S.-other affiliation
Sabir F.K.-other affiliation
Tran V.T.-other affiliation
Nwaji N.-IPPT PAN
Gonfa B.A.-other affiliation
Teshome Tufa L.-other affiliation