Partner: Tomasz Czarski

Institute of Plasma Physics and Laser Microfusion (PL)

Recent publications
1.Chernyshova M., Malinowski K., Czarski T., Demchenko I.N., Melikhov Y., Kowalska-Strzęciwilk E., Wojeński A., Krawczyk R.D., Effect of charging-up and regular usage on performance of the triple GEM detector to be employed for plasma radiation monitoring, Fusion Engineering and Design, ISSN: 0920-3796, DOI: 10.1016/j.fusengdes.2020.111755, Vol.158, pp.111755-1-6, 2020
Abstract:

After the problem of high-temperature plasma confinement, construction of diagnostics that is able to identify plasma contamination with impurities and to determine impurity distribution is another critically important issue. Solution of this problem would enable progress towards the success in controlled thermonuclear fusion. A new diagnostics, based on Gas Electron Multiplier (GEM) technology, has been recently developed for poloidal tomography focused on radiation of the metal impurities by monitoring in Soft X-Ray (SXR) region. GEM based detectors would undergo much less damage by neutrons than standard semiconductor diodes which results in better operational stability. This paper emphasizes the results of the latest examination of this type of detectors, showing influence of the charging-up effect on the detector performance and its physical properties for expected plasma radiation intensity. In addition, an undesired influence of aging of the detector window's material on the performance of the GEM detector is also shown: regular (moderate or active) usage could lead to changes of material's morphology as well as its composition. This study confirms the importance of further research into material’s optimization of GEM detectors used as a base for SXR tomographic diagnostics aimed to work under different plasma radiation conditions.

Keywords:

nuclear instruments for hot plasma diagnostics, X-ray detectors, electron multipliers (gas), micropattern gaseous detectors, charging-up effect, detector window's material

Affiliations:
Chernyshova M.-Institute of Plasma Physics and Laser Microfusion (PL)
Malinowski K.-Institute of Plasma Physics and Laser Microfusion (PL)
Czarski T.-Institute of Plasma Physics and Laser Microfusion (PL)
Demchenko I.N.-Institute of Physics, Polish Academy of Sciences (PL)
Melikhov Y.-other affiliation
Kowalska-Strzęciwilk E.-Institute of Plasma Physics and Laser Microfusion (PL)
Wojeński A.-Warsaw University of Technology (PL)
Krawczyk R.D.-Warsaw University of Technology (PL)
2.Chernyshova M., Malinowski K., Czarski T., Kowalska-Strzęciwilk E., Linczuk P., Wojeński A., Krawczyk R.D., Melikhov Y., Advantages of Al based GEM detector aimed at plasma soft−semi hard X-ray radiation imaging, Fusion Engineering and Design, ISSN: 0920-3796, DOI: 10.1016/j.fusengdes.2019.01.153, Vol.146, pp.1039-1042, 2019
Abstract:

Development of gaseous detectors, more specifically Gas Electron Multiplier (GEM) based detectors, for application at tokamak plasma radiation monitoring/imaging in Soft−Semi Hard X-ray (S−SH) region is an ongoing research activity aiming to deliver valuable information on plasma shape, magnetic configuration, non-axisymmetry phenomena of the plasma, etc. Wide radiation range and brightness of plasma radiation impose some restrictions on choice of materials in the detecting chamber, as their interaction with the incident radiation may disrupt original signals. This work proposes usage of aluminum as GEM foils electrodes for the first time. The detector based on these foils was constructed and examined. The operational characteristics and spectral capabilities of such detector were compared with the ones based on the standard (commonly used) copper GEM foils. The laboratory tests were performed using X-ray tube and 55Fe sources to examine detectors' capabilities in energy-resolved imaging. Additionally, simulations of origin and number of the generated electrons, which determine the detector signal, were performed for Al and Cu GEM foils for a wide energy range of incident photons. The experimental and modelling data demonstrated that Cu based GEM detector produces higher parasitic signal than Al one necessitating total elimination of copper from detector's chamber.

Keywords:

nuclear instruments for hot plasma diagnostics, X-ray detectors, SXR imaging, electron multipliers (gas), micropattern gaseous detectors, aluminum GEM foils

Affiliations:
Chernyshova M.-Institute of Plasma Physics and Laser Microfusion (PL)
Malinowski K.-Institute of Plasma Physics and Laser Microfusion (PL)
Czarski T.-Institute of Plasma Physics and Laser Microfusion (PL)
Kowalska-Strzęciwilk E.-Institute of Plasma Physics and Laser Microfusion (PL)
Linczuk P.-Institute of Plasma Physics and Laser Microfusion (PL)
Wojeński A.-Warsaw University of Technology (PL)
Krawczyk R.D.-Warsaw University of Technology (PL)
Melikhov Y.-IPPT PAN
3.Chernyshova M., Malinowski K., Melikhov Y., Kowalska-Strzęciwilk E., Czarski T., Wojeński A., Linczuk P., Krawczyk R.D., Study of the optimal configuration for a Gas Electron Multiplier aimed at plasma impurity radiation monitoring, Fusion Engineering and Design, ISSN: 0920-3796, DOI: 10.1016/j.fusengdes.2018.03.031, Vol.136, pp.592-596, 2018
Abstract:

For the purpose of monitoring the level of plasma impurity (especially tungsten) and its distribution reconstruction at tokamaks (ITER in particular), a Soft X-Ray (SXR) tomographic diagnostics based on Gas Electron Multiplier (GEM) detectors with energy discrimination has been extensively considered for a while. Coupled with advanced electronics, GEM detectors offer excellent time and space resolution, as well as a charge spectrum from which the SXR photon spectrum can be deconvolved. In addition, they are less subjected to a neutron damage as compared to standard semiconductor diodes. This contribution highlights the latest studies supporting the development of such diagnostics focusing on laboratory tests to examine: (a) the impact of GEM holes geometry on the properties and distribution of the electron avalanche; (b) the effect of the high rate photon flux on GEM foil performance; and (c) the optimal electric field distribution.

Keywords:

Nuclear instruments for hot plasma diagnostics, X-ray detectors, Electron multipliers (gas), Micropattern gaseous detectors (MSGC; GEM; THGEM; RETHGEM; MHSP; MICROPIC; MICROMEGAS; InGrid; etc.)

Affiliations:
Chernyshova M.-Institute of Plasma Physics and Laser Microfusion (PL)
Malinowski K.-Institute of Plasma Physics and Laser Microfusion (PL)
Melikhov Y.-IPPT PAN
Kowalska-Strzęciwilk E.-Institute of Plasma Physics and Laser Microfusion (PL)
Czarski T.-Institute of Plasma Physics and Laser Microfusion (PL)
Wojeński A.-Warsaw University of Technology (PL)
Linczuk P.-Institute of Plasma Physics and Laser Microfusion (PL)
Krawczyk R.D.-Warsaw University of Technology (PL)
4.Chernyshova M., Czarski T., Malinowski K., Melikhov Y., Kasprowicz G., Kowalska-Strzęciwilk E., Linczuk P., Wojeński A., Krawczyk R.D., 2D GEM based imaging detector readout capabilities from perspective of intense soft x-ray plasma radiation, REVIEW OF SCIENTIFIC INSTRUMENTS, ISSN: 0034-6748, DOI: 10.1063/1.5039278, Vol.89, No.10, pp.10G106-1-5, 2018
Abstract:

A detecting system based on the Gas Electron Multiplier (GEM) technology is considered for tokamak plasma radiation monitoring. In order to estimate its capabilities in processing and recording intense photon flux (up to similar to 0.1 MHz/mm(2)), the imaging effectiveness of GEM detectors was tested with different patterned anode planes (i. e., different signal readouts): a simple hexagonal readout structure and three structures with interconnected electrodes (XY square, XY rectangular, and UXV). It was found that under intense photon flux, all the readouts fail to account for a considerable amount of the incoming signals due to mostly photon position determination ambiguity and overlapped signals. Analysis of the signals that can be used to determine photon position and energy unambiguously showed that the UXV readout structure is more effective among the readouts with interconnected electrodes. Along with similar spatial resolution and accuracy, the UXV based layout could be considered as a quite promising base of the interconnected anode electrodes configuration, keeping in mind that the photon rate capability has to be improved for the final application.

Affiliations:
Chernyshova M.-Institute of Plasma Physics and Laser Microfusion (PL)
Czarski T.-Institute of Plasma Physics and Laser Microfusion (PL)
Malinowski K.-Institute of Plasma Physics and Laser Microfusion (PL)
Melikhov Y.-IPPT PAN
Kasprowicz G.-Warsaw University of Technology (PL)
Kowalska-Strzęciwilk E.-Institute of Plasma Physics and Laser Microfusion (PL)
Linczuk P.-Institute of Plasma Physics and Laser Microfusion (PL)
Wojeński A.-Warsaw University of Technology (PL)
Krawczyk R.D.-Warsaw University of Technology (PL)