Partner: Sz-Chian Liou

University of Maryland (US)

Recent publications
1.Krajewski M., Pietrzyk P., Osial M., Liou S., Kubacki J., Iron–Iron Oxide Core–Shell Nanochains as High-Performance Adsorbents of Crystal Violet and Congo Red Dyes from Aqueous Solutions, LANGMUIR, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.3c00967, Vol.39, No.23, pp.8367-8377, 2023
Abstract:

The main aim of this work was to use the iron–iron oxide nanochains (Fe NCs) as adsorbents of the carcinogenic cationic crystal violet (CV) and anionic Congo red (CR) dyes from water. The investigated adsorbent was prepared by a magnetic-field-induced reduction reaction, and it revealed a typical core–shell structure. It was composed of an iron core covered by a thin Fe3O4 shell (<4 nm). The adsorption measurements conducted with UV–vis spectroscopy revealed that 15 mg of Fe NCs constituted an efficient dose to be used in the CV and CR treatment. The highest effectiveness of CV and CR removal was found for a contact time of 90 min at pH 7 and 150 min at pH 8, respectively. Kinetic studies indicated that the adsorption followed the pseudo-first-order kinetic model. The adsorption process followed the Temkin model for both dyes taking into account the highest value of the R2 coefficient, whereas in the case of CR, the Redlich–Peterson model could be also considered. The maximal adsorption capacity estimated from the Langmuir isotherms for the CV and CR was 778.47 and 348.46 mg g–1, respectively. Based on the Freundlich model, both dyes adsorbed on the Fe NCs through chemisorption, but Coulombic interactions between the dye and adsorbent cannot be excluded in the case of the CV dye. The obtained results proved that the investigated Fe NCs had an excellent adsorption ability for both dye molecules within five cycles of adsorption/desorption, and therefore, they can be considered as a promising material for water purification and environmental applications.

Affiliations:
Krajewski M.-IPPT PAN
Pietrzyk P.-IPPT PAN
Osial M.-IPPT PAN
Liou S.-University of Maryland (US)
Kubacki J.-Silesian University of Technology (PL)
2.Krajewski M., Liou S., Kubacki J., Investigation of iron oxide shell and iron core in magnetically-assisted synthetized wire-like nanochains, NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/1361-6528/acd38a, Vol.34, No.32, pp.325701-1-325701-7, 2023
Abstract:

The zerovalent iron (Fe0) nanomaterials tend to be spontaneously oxidized in the presence of oxygen. This leads to the formation of interface composed of iron core and thin iron oxide shell. These structures are frequently observed with transmission electron microscope but, at the same time, it is hard to determine the precise structural and chemical composition of oxide shell. This feature is very important for possible applications of Fe0 nanostructures. Hence, the present work aims to deliver more detailed insights in this topic. The investigations are performed for the iron nanochains prepared in the magnetic-field-induce reduction of FeCl3 by NaBH4. The high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoemission spectroscopy confirm that the iron nanochains are covered by very thin oxide layer not exceeding over 3 nm. Moreover, the detailed XPS analyses of O 1s and Fe 2p lines indicate that the iron oxide shell reveals Fe3O4 nature. Moreover, this work demonstrated that some by-products of the reaction containing boron are presented in the sample even after a removal of the thin iron oxide shell by Ar+ treatment.

Keywords:

iron nanochains, magnetic-field-induced synthesis, surface oxidation, x-ray photoemission spectroscopy

Affiliations:
Krajewski M.-IPPT PAN
Liou S.-University of Maryland (US)
Kubacki J.-Silesian University of Technology (PL)
3.Krajewski M., Witowski A., Liou S., Maj M., Tokarczyk M., Wasik D., Poly(vinylidene fluoride-co-hexafluoropropylene) films filled in iron nanoparticles for infrared shielding applications, Macromolecular Rapid Communications, ISSN: 1022-1336, DOI: 10.1002/marc.202300038, No.2300038, pp.1-7, 2023
Abstract:

In order to use the infrared (IR) radiation shielding materials, they should take a form of thin film coatings deposited on glass/polymer substrates or be used as fillers of glass/polymer. The first approach usually suffers from several
technological problems. Therefore, the second strategy gains more and more attention. Taking into account this trend, this work presents the usage of iron nanoparticles (Fe NPs) embedded into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films as the shielding material in near-infrared (NIR) and mid-infrared (MIR) region. The performed
investigations show that the transmittance of copolymer films decreases with
increasing content of the Fe NPs inside them. It is found that the average fade of IR transmittance for 1, 2.5, 5, 10, and 50 mg of Fe NPs is about 13%, 24%, 31%, 77%, and 98%, respectively. Moreover, it is observed that the PVDF-HFP films filled in the Fe NPs almost does not reflect the NIR and MIR radiation. Hence, the IR shielding properties of the PVDF-HFP films can be effectively tuned by the addition of proper amount of the Fe NPs. This, in turn, shows that the PVDF-HFP films filled in the Fe NPs constitute a great option for IR antireflective and shielding applications.

Keywords:

antireflective materials, copolymer films, infrared radiation shielding materials, iron nanoparticles, nanofillers

Affiliations:
Krajewski M.-IPPT PAN
Witowski A.-other affiliation
Liou S.-University of Maryland (US)
Maj M.-IPPT PAN
Tokarczyk M.-University of Warsaw (PL)
Wasik D.-University of Warsaw (PL)
4.Jelen Z., Krajewski M., Zupanič F., Majerič P., Švarc T., Anžel I., Ekar J., Liou S., Kubacki J., Tokarczyk M., Rudolf R., Melting point of dried gold nanoparticles prepared with ultrasonic spray pyrolysis and lyophilisation, nanotechnology reviews, ISSN: 2191-9097, DOI: 10.1515/ntrev-2022-0568, Vol.12, No.1, pp.1-12, 2023
Abstract:

A coupled process of ultrasonic spray pyrolysis and lyophilisation was used for the synthesis of dried gold nanoparticles. Two methods were applied for determining their melting temperature: uniaxial microcompression and differential scanning calorimetry (DSC) analysis. Uniaxial microcompression resulted in sintering of the dried gold nanoparticles at room temperature with an activation energy of 26–32.5 J/g, which made it impossible to evaluate their melting point. Using DSC, the melting point of the dried gold nanoparticles was measured to be around 1064.3°C, which is close to pure gold. The reason for the absence of a melting point depression in dried gold nanoparticles was their exothermic sintering between 712 and 908.1°C.

Keywords:

gold nanoparticles, melting point, ultrasonic spray pyrolysis, characterisation

Affiliations:
Jelen Z.-other affiliation
Krajewski M.-IPPT PAN
Zupanič F.-other affiliation
Majerič P.-other affiliation
Švarc T.-other affiliation
Anžel I.-other affiliation
Ekar J.-other affiliation
Liou S.-University of Maryland (US)
Kubacki J.-Silesian University of Technology (PL)
Tokarczyk M.-University of Warsaw (PL)
Rudolf R.-other affiliation
5.Krajewski M., Liou S.C., Jurkiewicz K., Brzózka K., Chiou W.A., Kubacki J., Burian A., Glass-like structure of iron-nickel nanochains produced by magnetic-field-induced reduction reaction with sodium borohydride, Physical Chemistry Chemical Physics, ISSN: 1463-9076, DOI: 10.1039/D1CP04411G, pp.1-9, 2021
Abstract:

Preparation and detailed structural characterization of iron-nickel wire-like nanochains with Fe0.75Ni0.25, Fe0.50Ni0.50, and Fe0.25Ni0.75 compositions are reported. The investigated nanomaterials were produced in the novel template-free magnetic-field-induced reduction reaction with NaBH4 as a reducing agent. It is demonstrated that this method leads to the formation of Fe-Ni nanochains composed of spherical nanoparticles with an average diameter of 50-70 nm and with a very high degree of atomic disorder manifested as the lack of clearly developed bcc and fcc phases, which are usually observed for nano- and polycrystalline Fe-Ni species. The recorded wide-angle X-ray scattering data for the obtained Fe-Ni nanochains exhibit a strong resemblance to those obtained for bulk metallic glasses. The atomic scale structure of the investigated nanochains has been studied using pair distribution function analysis of the recorded total scattering data. The best fits to the experimental pair distribution functions have been achieved assuming two-phase models of hcp and bcc networks with the size of coherently scattering regions of about 2.5 nm in diameter, for each Fe-Ni composition. Transmission electron microscopy images indicate that the glass-like bimetallic alloy cores are covered by amorphous oxide/hydroxide shells with thickness ranging from 2 to 5 nm. Moreover, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy results confirm the core-shell structure of the Fe-Ni nanochains and a complex character of shell layer which consists of several iron- and nickel-containing phases.

Affiliations:
Krajewski M.-IPPT PAN
Liou S.C.-University of Maryland (US)
Jurkiewicz K.-University of Silesia (PL)
Brzózka K.-University of Technology and Humanities in Radom (PL)
Chiou W.A.-University of Maryland (US)
Kubacki J.-Silesian University of Technology (PL)
Burian A.-Silesian University of Technology (PL)
6.Krajewski M., Liou S.C., Chiou W.A., Tokarczyk M., Małolepszy A., Płocińska M., Witecka A., Lewińska S., Ślawska-Waniewska A., Amorphous FexCo1–x wire-like nanostructures manufactured through surfactant-free magnetic-field-induced synthesis, Crystal Growth and Design, ISSN: 1528-7483, DOI: 10.1021/acs.cgd.0c00070, Vol.20, No.5, pp.3208-3216, 2020
Abstract:

So far, it has been proven that the magnetic-field-induced (MFI) synthesis is a process which mainly leads to the formation of magnetic metallic one-dimensional nanostructures. Taking advantage of this method, the new procedures which allow manufacture of the magnetic bimetallic iron–cobalt wire-like nanochains with Fe0.75 Co0.25, Fe0.50 Co0.50, and Fe0.25 Co0.75 compositions are demonstrated in this work. They were produced through a simple one-step magnetic-field-induced (MFI) chemical co-reduction of three different mixtures containing a proper amount of Fe2+ and Co2+ ions with aqueous sodium borohydride solution as the reducing agent. The synthesis process was carried out at room temperature without the use of templates, surfactants, complexing agents, and organic solvents. The morphological and structural studies indicated that all as-prepared materials were amorphous, and they were composed of nanoparticles aligned in almost straight chains. Moreover, they revealed the core–shell structures with bimetallic alloy cores containing desired iron-to-cobalt ratios and very thin oxide shells. Furthermore, the obtained nanostructures behaved as ferromagnetic materials. Their magnetic properties were correlated with their structural properties and chemical compositions. It was observed that their saturation magnetization decreased significantly with increasing content of cobalt in the chains, whereas the variation of their coercivity was less pronounced.

Affiliations:
Krajewski M.-IPPT PAN
Liou S.C.-University of Maryland (US)
Chiou W.A.-University of Maryland (US)
Tokarczyk M.-University of Warsaw (PL)
Małolepszy A.-Warsaw University of Technology (PL)
Płocińska M.-Warsaw University of Technology (PL)
Witecka A.-IPPT PAN
Lewińska S.-Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A.-other affiliation

Conference papers
1.Krajewski M., Tokarczyk M., Witecka A., Lewińska S., Ślawska-Waniewska A., Małolepszy A., Liou S.C., Chiou W.A., Manufacturing and magnetic properties of FexCo1‒x wire-like nanoalloys, CNM 2019, 6th CONFERENCE ON NANO- AND MICROMECHANICS, 2019-07-03/07-05, Rzeszów (PL), pp.103-104, 2019
Keywords:

magnetic-field-induced process, magnetic material, nanoalloy, wire-like nanostructure

Affiliations:
Krajewski M.-IPPT PAN
Tokarczyk M.-University of Warsaw (PL)
Witecka A.-IPPT PAN
Lewińska S.-Institute of Physics, Polish Academy of Sciences (PL)
Ślawska-Waniewska A.-other affiliation
Małolepszy A.-Warsaw University of Technology (PL)
Liou S.C.-University of Maryland (US)
Chiou W.A.-University of Maryland (US)
2.Liou S.C., Krajewski M., Chiou W.A., Tokarczyk M., Kowalski G., TEM Studies of Fe1-xNix Nanowires by Magnetic-Field-Induced Synthesis, M&M 2019, Microscopy & Microanalysis 2019, 2019-08-04/08-08, Portland (US), DOI: 10.1017/S143192761901170X, No.25, pp.2194-2195, 2019

Conference abstracts
1.Krajewski M., Pietrzyk P., Osial M., Liou S.C., Świątkowski A., Pawluk K., Iron-iron oxide core-shell nanochains and their possible environmental applications, THERMEC 2023, International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications, 2023-07-02/07-07, Wiedeń (AT), No.718, pp.364-365, 2023
2.Krajewski M., Liou S.C., Chiou W.A., Jurkiewicz K., Kubacki J., Burian A., Detailed structural investigations of nanochains composed of Fe-Ni nanoparticles, THERMEC 2023, International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications, 2023-07-02/07-07, Wiedeń (AT), No.550, pp.331-331, 2021
3.Krajewski M., Tokarczyk M., Witecka A., Lewińska S., Ślawska-Waniewska A., Liou S.C., Chiou W.A., Płocińska M., Towards magnetic 1D nanostructures - magnetic field as a growth parameter, LIV Zakopane School of Physics Breaking Frontiers: Submicron Structures in Physics and Biology, 2019-05-21/05-25, Zakopane (PL), pp.42-42, 2019