1. | Fiebelkow J.♦, Guendel A.♦, Guendel B.♦, Mehwald N.♦, Jetka T.♦, Komorowski M., Waldherr S.♦, Schaper F.♦, Dittrich A.♦, The tyrosine phosphatase SHP2 increases robustness and information transfer within IL-6-induced JAK/STAT signalling, Cell Communication and Signaling, ISSN: 1478-811X, DOI: 10.1186/s12964-021-00770-7, Vol.19, No.1, pp.94-1-19, 2021Abstract:Background - Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods - Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results - SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion - In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information. Plain English summary - Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease. Keywords:signal transduction, SHP2, PTPN11, JAK/STAT, MAPK, information theory, channel capacity, mutual information Affiliations:Fiebelkow J. | - | other affiliation | Guendel A. | - | other affiliation | Guendel B. | - | other affiliation | Mehwald N. | - | other affiliation | Jetka T. | - | other affiliation | Komorowski M. | - | IPPT PAN | Waldherr S. | - | Katholieke Universiteit Leuven (BE) | Schaper F. | - | Otto-von-Guericke University (DE) | Dittrich A. | - | Otto-von-Guericke University (DE) |
| |
2. | Billing U.♦, Jetka T.♦, Nortmann L.♦, Wundrack N.♦, Komorowski M., Waldherr S.♦, Schaper F.♦, Dittrich A.♦, Robustness and information transfer within IL-6-induced JAK/STAT signalling, Communications Biology, ISSN: 2399-3642, DOI: 10.1038/s42003-018-0259-4, Vol.2, pp.27-1-14, 2019Abstract:Cellular communication via intracellular signalling pathways is crucial. Expression and activation of signalling proteins is heterogenous between isogenic cells of the same cell-type. However, mechanisms evolved to enable sufficient communication and to ensure cellular functions. We use information theory to clarify mechanisms facilitating IL-6-induced JAK/STAT signalling despite cell-to-cell variability. We show that different mechanisms enabling robustness against variability complement each other. Early STAT3 activation is robust as long as cytokine concentrations are low. Robustness at high cytokine concentrations is ensured by high STAT3 expression or serine phosphorylation. Later the feedback-inhibitor SOCS3 increases robustness. Channel Capacity of JAK/STAT signalling is limited by cell-to-cell variability in STAT3 expression and is affected by the same mechanisms governing robustness. Increasing STAT3 amount increases Channel Capacity and robustness, whereas increasing STAT3 tyrosine phosphorylation reduces robustness but increases Channel Capacity. In summary, we elucidate mechanisms preventing dysregulated signalling by enabling reliable JAK/STAT signalling despite cell-to-cell heterogeneity. Affiliations:Billing U. | - | Otto-von-Guericke University (DE) | Jetka T. | - | other affiliation | Nortmann L. | - | Otto-von-Guericke University (DE) | Wundrack N. | - | Otto-von-Guericke University (DE) | Komorowski M. | - | IPPT PAN | Waldherr S. | - | Katholieke Universiteit Leuven (BE) | Schaper F. | - | Otto-von-Guericke University (DE) | Dittrich A. | - | Otto-von-Guericke University (DE) |
| |