
Partner: Sohrab Asgaran |
Recent publications
1. | Nwaji N., Fikadu B. B.♦, Osial M., Warczak M.♦, Moazzami Goudarzi Z., Gniadek M.♦, Asgaran S.♦, Lee J.♦, Giersig M., Advanced Functional NiCo 2 S4 @CoMo2 S4 Heterojunction Couple as Electrode for Hydrogen Production via Energy-Saving Urea Oxidation, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202410848, Vol.2410848, pp.1-13, 2025![]() Abstract: The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge
| ![]() | |||||||||||||||||||||||||||
2. | Boka Fikadu B.♦, Mahendra G.♦, Nwaji N., Juyoung G.♦, Gicha B.♦, Hyojin K.♦, Asgaran S.♦, Hee-Joon C.♦, Lee J.♦, Defect Engineered Ru-CoMOF@MoS2 HeterointerfaceFacilitate Water Oxidation Process, Chemistry Europe, ISSN: 1864-564X, DOI: 10.1002/cssc.202402533, pp.1-12, 2025![]() Abstract: Catalyst design plays a critical role in ensuring sustainable andeffective energy conversion. Electrocatalytic materials need tobe able to control active sites and introduce defects in bothacidic and alkaline electrolytes. Furthermore, producing efficientcatalysts with a distinct surface structure advances ourcomprehension of the mechanism. Here, a defect-engineeredheterointerface of ruthenium doped cobalt metal organic frame(Ru-CoMOF) core confined in MoS2 is reported. A tailored designapproach at room temperature was used to induce defects andform an electron transfer interface that enhanced the electro-catalytic performance. The Ru-CoMOF@MoS2 heterointerfaceobtains a geometrical current density of 10 mA-2 by providinghydrogen evolution reaction (HER) and oxygen evolutionreaction (OER) at small overpotentials of 240 and 289 mV,respectively. Density functional theory simulation shows thatthe Co-site maximizes the evolution of hydrogen intermediateenergy for adsorption and enhances HER, while the Ru-site, onthe other hand, is where OER happens. The heterointerfaceprovides a channel for electron transfer and promotes reactionsat the solid-liquid interface. The Ru-CoMOF@MoS2 modelexhibits improved OER and HER efficiency, indicating that itcould be a valuable material for the production of water-alkaline and acidic catalysts Affiliations:
| ![]() | |||||||||||||||||||||||||||
3. | Khosravi N.♦, Alzufairi A.♦, Zahed P.♦, Abouchenari A.♦, Asgaran S.♦, Reza-Soltani S.♦, Moazzami Goudarzi Z., Biomedical applications of copper nanoparticles: an up-to-date overview, Journal of Composites and Compounds, ISSN: 2676-5837, DOI: 10.61186/jcc.6.4.1, Vol.6, pp.21-1-8, 2024![]() Abstract: Copper nanoparticles (CuNPs) have garnered significant attention in biomedicine due to their various properties and potential applications. These nanoparticles exhibit promising antimicrobial, anticancer, and antioxidant activities, which enhance their value in nanomedicine applications. Their properties, shaped by the fabrication techniques, facilitate their application in drug delivery, cancer therapy, tissue engineering, and dental applications uses. Nevertheless, obstacles persist in attaining biocompatibility and regulated release, which are vital for effective clinical transference. Toxicological evaluations are essential to ensure the secure utilization of CuNPs. Additionally, studies are ongoing to find creative solutions to address these challenges and fully harness the medical potential of CuNPs. Keywords:Copper nanoparticles,Antibacterial,Synthesis,Biocompatibility,Biomedical applications Affiliations:
| ![]() | |||||||||||||||||||||||||||
4. | Nwaji N., Fikadu B.♦, Osial M., Moazzami Goudarzi Z., Asgaran S.♦, Teshome Tufa L.♦, Lee J.♦, Giersig M., Disentangling the catalytic origin in defect engineered 2D NiCoMoS@Ni(CN)2 core-shell heterostructure for energy-saving hydrazine-assisted water oxidation, International Journal of Hydrogen Energy, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2024.08.432, Vol.86, pp.554-563, 2024![]() Abstract: The major hindrance to efficient electrocatalytic hydrogen generation from water electrolysis is the sluggish kinetics with corresponding large overvoltage of oxygen evolution reaction. Herein, we report a defective 2D NiCoMoS@Ni(CN)2 core-shell heterostructure derived from Hofmann-type MOF as an efficient and durable high-performance noble metal-free electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The sluggish oxygen evolution reaction was replaced with a more thermodynamically favourable HzOR, enabling energy-saving electrochemical hydrogen production with 2D NiCoMoS@Ni(CN)2 acting as a bifunctional electrocatalyst for anodic HzOR and cathodic hydrogen generation. Operating at room temperature, the two-electrode electrolyzer delivers 100 mA cm−2 from a cell voltage of just 257 mV, with strong long-term electrochemical durability and nearly 100% Faradaic efficiency for hydrogen evolution in 1.0 M KOH aqueous solution with 0.5 M hydrazine. The density functional theory (DFT) was employed to investigate the origin of catalytic performance and showed that high vacancy creation within the heterointerface endowed NiCoMoS@Ni(CN)2 with favourable functionalities for excellent catalytic performance. Keywords:Defect engineering, Core-shell, Electrocatalyst, Hydrazine oxidation, Heterostructure Affiliations:
| ![]() |