Partner: Nasim Annabi

Massachusetts Institute of Technology (US)

Recent publications
1.Rinoldi C., Fallahi A., Yazdi I.K., Paras J.C., Kijeńska-Gawrońska E., Trujillo-de Santiago G., Tuoheti A., Demarchi D., Annabi N., Khademhosseini A., Święszkowski W., Tamayol A., Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.8b01647, Vol.5, No.6, pp.2953-2964, 2019
Abstract:

Tendon injuries are frequent and occur in the elderly, young, and athletic populations. The inadequate number of donors combined with many challenges associated with autografts, allografts, xenografts, and prosthetic devices have added to the value of engineering biological substitutes, which can be implanted to repair the damaged tendons. Electrospun scaffolds have the potential to mimic the native tissue structure along with desired mechanical properties and, thus, have attracted noticeable attention. In order to improve the biological responses of these fibrous structures, we designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed constructs can be used for engineering functional tendons.

Keywords:

tendon tissue engineering, composite scaffolds, nanofibrous materials, mechanical stimulation, stem cell differentiation

Affiliations:
Rinoldi C.-other affiliation
Fallahi A.-Paul Scherrer Institut (CH)
Yazdi I.K.-Massachusetts Institute of Technology (US)
Paras J.C.-Massachusetts Institute of Technology (US)
Kijeńska-Gawrońska E.-Warsaw University of Technology (PL)
Trujillo-de Santiago G.-Massachusetts Institute of Technology (US)
Tuoheti A.-Politecnico di Torino (IT)
Demarchi D.-Politecnico di Torino (IT)
Annabi N.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Święszkowski W.-other affiliation
Tamayol A.-Massachusetts Institute of Technology (US)
2.Nasajpour A., Ansari S., Rinoldi C., Rad A.S., Aghaloo T., Shin S.R., Mishra Y.K., Adelung R., Święszkowski W., Annabi N., Khademhosseini A., Moshaverinia A., Tamayol A., A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics, Advanced Functional Materials, ISSN: 1616-301X, DOI: 10.1002/adfm.201703437, Vol.28, No.3, pp.1703437-1-8, 2017
Abstract:

Periodontitis is a prevalent chronic, destructive inflammatory disease affecting tooth‐supporting tissues in humans. Guided tissue regeneration strategies are widely utilized for periodontal tissue regeneration generally by using a periodontal membrane. The main role of these membranes is to establish a mechanical barrier that prevents the apical migration of the gingival epithelium and hence allowing the growth of periodontal ligament and bone tissue to selectively repopulate the root surface. Currently available membranes have limited bioactivity and regeneration potential. To address such challenges, an osteoconductive, antibacterial, and flexible poly(caprolactone) (PCL) composite membrane containing zinc oxide (ZnO) nanoparticles is developed. The membranes are fabricated through electrospinning of PCL and ZnO particles. The physical properties, mechanical characteristics, and in vitro degradation of the engineered membrane are studied in detail. Also, the osteoconductivity and antibacterial properties of the developed membrane are analyzed in vitro. Moreover, the functionality of the membrane is evaluated with a rat periodontal defect model. The results confirmed that the engineered membrane exerts both osteoconductive and antibacterial properties, demonstrating its great potential for periodontal tissue engineering.

Keywords:

electrospinning, guided tissue regeneration, osteoconductive, periodontal regeneration, zinc oxide

Affiliations:
Nasajpour A.-Massachusetts Institute of Technology (US)
Ansari S.-University of California (US)
Rinoldi C.-other affiliation
Rad A.S.-Massachusetts Institute of Technology (US)
Aghaloo T.-University of California (US)
Shin S.R.-Massachusetts Institute of Technology (US)
Mishra Y.K.-Kiel University (DE)
Adelung R.-Kiel University (DE)
Święszkowski W.-other affiliation
Annabi N.-Massachusetts Institute of Technology (US)
Khademhosseini A.-Massachusetts Institute of Technology (US)
Moshaverinia A.-University of California (US)
Tamayol A.-Massachusetts Institute of Technology (US)