Partner: M.Z.A Yahya


Recent publications
1.Nazir S., Singh P., Rawat N., Jain A., Michalska M., Yahya M., Yusuf S., Diantoro M., Polyether (polyethylene oxide) derived carbon electrode material and polymer electrolyte for supercapacitor and dye-sensitized solar cell, Ionics, ISSN: 0947-7047, DOI: 10.1007/s11581-024-06052-9, pp.1-11, 2025
Abstract:

This study investigates the development and performance analysis of a supercapacitor using activated carbon synthesized from polyethylene oxide (PEO) as the electrode material, and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based polymer electrolyte, prepared using a solution-cast technique for dye-sensitized solar cell (DSSC) application. This paper deals with polyether-based electrochemical devices, where electrode material is developed by polyethylene oxide (PEO), while an electrolyte is prepared using PVdF-HFP. Detailed electrical and photoelectrochemical studies were carried out using various characterization tools, and the results are discussed in detail. Sandwich structure supercapacitors and DSSCs are developed using maximum conducting polymer electrolyte that has an ionic conductivity of (8.3 × 10−5) Scm−1, exhibiting a high specific capacitance of 395 Fg−1 and DSSC efficiency ranging from 1.6 to 3.5% under 1 sun condition. The findings underscore the capability of PEO-derived carbon and polymer electrolytes in improving the efficiency of energy storage and conversion systems.

Keywords:

Polyether, Activated carbon, Supercapacitor, Dye-sensitized solar cell

Affiliations:
Nazir S.-other affiliation
Singh P.-other affiliation
Rawat N.-other affiliation
Jain A.-IPPT PAN
Michalska M.-Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Yahya M.-other affiliation
Yusuf S.-other affiliation
Diantoro M.-other affiliation
2.Konwar S., Kumar S., Mohamad A., Jain A., Michalska M., Punetha V., Yahya M., Strzałkowski K., Dharmendra Pratap S., Diantoro M., Chowdhury F., Singh P., Ionic liquid (1-Ethyl-3-methylimidazolium tricyanomethanide) incorporated corn starch polymer electrolyte for solar cell and supercapacitor application, Chemical Physics Impact, ISSN: 2667-0224, DOI: 10.1016/j.chphi.2024.100780, Vol.10, pp.1-7, 2025
Abstract:

Taking into account energy demand a new highly conducting ionic liquid (IL) c (EmImTCM) mixed corn starch (CS) biopolymer electrolyte is synthesized for dual electrochemical application electric double layer capacitor (EDLC) and the dye-sensitized solar cell (DSSC) application. Electrical, structural, thermal, and optical studies are carried out in detail and presented in this communication. Maximum conducting IL-incorporated biopolymer electrolyte film has been sandwiched between electrodes to develop EDLC and DSSC. The sandwich-structured EDLC delivers a high specific capacitance of 250 F/gram while DSSC shows 1.44 % efficiency at one sun condition.

Keywords:

Corn starch, Biopolymer, XRD, TGA, EDLC, DSSC

Affiliations:
Konwar S.-other affiliation
Kumar S.-other affiliation
Mohamad A.-other affiliation
Jain A.-IPPT PAN
Michalska M.-Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Punetha V.-other affiliation
Yahya M.-other affiliation
Strzałkowski K.-other affiliation
Dharmendra Pratap S.-other affiliation
Diantoro M.-other affiliation
Chowdhury F.-other affiliation
Singh P.-other affiliation
3.Nazir S., Singh P., Jain A., Michalska M., Yahya M., Yusuf S., Diantoro M., Latif F., Singh M., Polyether-Derived Carbon Material and Ionic Liquid (Tributylmethylphosphonium iodide) Incorporated Poly(Vinylidene Fluoride-co-Hexafluoropropylene)-Based Polymer Electrolyte for Supercapacitor Application, Journal of Energy Storage, ISSN: 2352-152X, DOI: 10.1002/est2.70083, Vol.6, No.8, pp.1-15, 2024
Abstract:

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-sodium thiocyanate (NaSCN) solid polymer electrolytes containing different weight ratios of ionic liquid (IL)—tributylmethylphosphonium iodide (TBMPI) were prepared using solution-cast approach. Electrochemical impedance data indicates that increasing ionic liquid into polymer electrolyte matrix increases ionic conductivity and the maximum value of ionic conductivity was obtained at 150 wt% TBMPI, having conductivity value of 8.3 × 10−5 S cm−1. The dielectric measurement supports our conductivity data. Ionic transference number measurement affirms this system to be predominantly ionic in nature, while electrochemical stability window (ESW) was found to be 3.4 V. Polarized optical microscopy (POM) along with differential scanning calorimetry (DSC) suggest suitability of TBMPI as plasticizer, while infrared spectroscopy (FTIR) confirms ion interaction, complexation, and composite nature. The thermogravimetric analysis (TGA) shows thermal stability of these ionic liquid-doped polymer electrolytes (ILDPEs). Using maximum conducting ILDPE, a sandwiched supercapacitor has been fabricated which shows stable performance as high as 228 Fg−1 using cyclic voltammetry (CV).

Keywords:

capacitance, ionic conductivity, ionic liquid (IL), solid polymer electrolyte (SPE), supercapacitor (SC)

Affiliations:
Nazir S.-other affiliation
Singh P.-other affiliation
Jain A.-IPPT PAN
Michalska M.-Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Yahya M.-other affiliation
Yusuf S.-other affiliation
Diantoro M.-other affiliation
Latif F.-other affiliation
Singh M.-other affiliation
4.Rawat S., Singh P., Jain A., Song S., Yahya M., Savilov S., Diantoro M., Michalska M., Polu A., Singh R., Ionic liquid (1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate) doped polyethylene polymer electrolyte for energy devices, Journal of Materials Science: Materials in Electronics, ISSN: 0957-4522, DOI: 10.1007/s10854-024-13397-4, Vol.35, No.1643, pp.1-10, 2024
Abstract:

This paper provides a comprehensive overview of the influence of 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate (BMPyrrOTf)-ionic liquid on a new polymer electrolyte where Polyethylene oxide (PEO) as host and ammonium iodide (NH4I) as salt. These IL-doped solid polymer electrolyte were prepared using solution cast technique. Various characterisation techniques have been utilized to evaluate the qualitative and quantitative estimation of polymer electrolyte like Polarized microscopy (POM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Linear sweep voltammetry (LSV), Ionic transference no. (tion) and Impedance spectroscopy. Doping IL increases conductivity and highest achieve at 8 wt% of BMPyrrOTF with conductivity value reaches upto 4.15 × 10–5 S/cm at. Using Wagner’s polarization method, Ionic transference measurement support ionic conduction while stable potential window has further affirmed good electrochemical stability of films. The highest conducting IL-enriched polymer electrolyte sandwiched low-cost dye-sensitized solar cells (DSSCs) and electric double layer capacitors (EDLCs) have been developed, and their performance is conveniently appropriate.

Affiliations:
Rawat S.-other affiliation
Singh P.-other affiliation
Jain A.-IPPT PAN
Song S.-other affiliation
Yahya M.-other affiliation
Savilov S.-other affiliation
Diantoro M.-other affiliation
Michalska M.-Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
Polu A.-other affiliation
Singh R.-other affiliation