Partner: M. Budnicka |
Recent publications
1. | Budnicka M.♦, Szymaniak M.♦, Kołbuk D., Ruśkowski P.♦, Gadomska-Gajadhur A.♦, Biomineralization of poly-l-lactide spongy bone scaffolds obtained by freeze-extraction method, Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.34441, Vol.108, No.3, pp.868-879, 2020 Abstract: Implants in the form of polymer scaffolds are commonly used to regenerate bone tissue after traumas or tooth extractions. However, few implant formation methods enable building polymer scaffolds allowing to reconstruct larger bone losses without immune response. Spacious, porous poly-l-lactide implants with considerable volume were obtained using the phase inversion method with the freeze-extraction variant. The calcium phosphate (CaP) coating was deposited on implant surfaces with the biomimetic method to improve the implant's osteoconductivity. The substitues morphology was characterized-porosity, size and shape of pores; mechanical properties, mass absorbability of implants before and after mineralization. The characteristics were provided with scanning electron microscopy (SEM), static compression test and hydrostatic weighing, respectively. The presence of CaPs in the entire volume of the implant was confirmed with SEM and infrared spectroscopy with Fourier transform (FTIR). The biocompatibility of scaffolds was confirmed with in vitro quantitative test and microscopic observations. The obtained results show that the implants can be used in tissue engineering as a vehicle of platelet-rich plasma to regenerate critical spongy bone losses. Keywords:bone graft, calcium phosphate(s), cell culture Affiliations:
| ||||||||||||||||
2. | Budnicka M.♦, Kołbuk D., Ruśkowski P.♦, Gadomska‐Gajadhur A.♦, Poly‐L ‐lactide scaffolds with super pores obtained by freeze‐extraction method, Journal of Biomedical Materials Research Part B: Applied Biomaterials, ISSN: 1552-4973, DOI: 10.1002/jbm.b.34642, Vol.108, No.8, pp.3162-3173, 2020 Abstract: A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration. Keywords:cellular studies, Eudragit® E100, freeze-extraction, poly-L-lactide Affiliations:
|
Patents
Filing No./Date Filing Publication | Autor(s) Title Protection Area, Applicant Name | Patent Number Date of Grant | |
---|---|---|---|
430802 2019-08-02 BUP 03/2021 2021-02-08 | Gadomska-Gajadhur A.♦, Budnicka M.♦, Ruśkowski P.♦, Kołbuk-Konieczny D.Sposób otrzymywania polilaktydowego substytutu kości gąbczastejPL, Politechnika Warszawska | 239154 WUP 32/2021 2021-11-08 | |
426830 2018-08-28 BUP 06/2020 2020-03-09 | Gadomska-Gajadhur A.♦, Ruśkowski P.♦, Synoradzki L.♦, Wrzecionek M.♦, Kołbuk-Konieczny D., Jeznach O., Budnicka M.♦, Szymaniak M.♦Sposób otrzymywania poli(bursztynianiu glicerolu)PL, Politechnika Warszawska | 238248 WUP 18/2021 2021-08-02 |