Partner: J. Jagielski

National Centre for Nuclear Research (PL)

Recent publications
1.Kosińska A., Jagielski J., Bieliński D.M., Urbanek O., Wilczopolska M., Frelek-Kozak M., Zaborowska A., Wyszkowska E., Jóźwik I., Structural and chemical changes in He+ bombarded polymers and related performance properties, JOURNAL OF APPLIED PHYSICS, ISSN: 0021-8979, DOI: 10.1063/5.0099137, Vol.132, pp.074701-1-18, 2022
Abstract:

The paper presents the effect of He+ ion irradiation of selected polymeric materials: poly(tetrafloroethylene), poly(vinyl chloride), ethylene-propylene-diene monomer rubber, nitrile-butadiene rubber, styrene-butadiene rubber, and natural rubber, on their chemical composition, physical structure, and surface topography. The modification was studied by scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and differential scanning calorimetry. Irradiation with a high-energy ion beam leads to the release of significant amounts of hydrogen from the surface layer, resulting in an increase in cross-linking that manifests itself by shrinkage of the surface layer, which in turn causes significant stresses leading to the formation of a crack pattern on the polymer surface. The development of microroughness is combined with oxidation. Shallow range of the ions makes the modified layer “anchored” in the substrate via bulk macromolecules, assuring its good durability and adhesion to elasto-plastic substrates. Changes in the surface layer were manifested by the modification of functional properties of the polymers. The hardness of the layer subjected to the ion irradiation process increases even up to 10 times. After modification with the ion beam, a significant decrease in frictional forces was also observed, even up to 5–6 times. The microscopic analysis of wear traces confirmed that the wear resistance also significantly increased. However, ion bombardment of polymeric materials caused a reduction in their mechanical strength (despite the range limited to the surface layer of the order of micrometers) and electrical resistance, which has a negative impact on the possibility of using the materials in some applications.

Affiliations:
Kosińska A.-other affiliation
Jagielski J.-National Centre for Nuclear Research (PL)
Bieliński D.M.-other affiliation
Urbanek O.-IPPT PAN
Wilczopolska M.-other affiliation
Frelek-Kozak M.-other affiliation
Zaborowska A.-other affiliation
Wyszkowska E.-National Centre for Nuclear Research (PL)
Jóźwik I.-Institute of Electronic Materials Technology (PL)
2.Ustrzycka A., Skoczeń B., Nowak M., Kurpaska Ł., Wyszkowska E., Jagielski J., Elastic–plastic-damage model of nano-indentation of the ion-irradiated 6061 aluminium alloy, INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, ISSN: 1056-7895, DOI: 10.1177/1056789520906209, pp.1-35, 2020
Abstract:

The paper presents experimental and numerical characterization of damage evolution for ion-irradiated materials subjected to plastic deformation during nano-indentation. Ion irradiation technique belongs to the methods where creation of radiation-induced defects is controlled with a high accuracy (including both, concentration and depth distribution control), and allows to obtain materials having a wide range of damage level, usually expressed in terms of displacements per atom (dpa) scale. Ion affected layers are usually thin, typically less than 1 micrometer thick. Such a low thickness requires to use nano-indentation technique to measure the mechanical properties of the irradiated layers. The He or Ar ion penetration depth reaches approximately 150 nm, which is sufficient to perform several loading-partial-unloading cycles at increasing forces. Damage evolution is reflected by the force-displacement diagram, that is backed by the stress–strain relation including damage. In this work the following approach is applied: dpa is obtained from physics (irradiation mechanisms), afterwards, the radiation-induced damage is defined in the framework of continuum damage mechanics to solve the problem of further evolution of damage fields under mechanical loads. The nature of radiation-induced damage is close to porosity because of formation of clusters of vacancies. The new mathematical relation between radiation damage (dpa) and porosity parameter is proposed. Deformation process experienced by the ion irradiated materials during the nano-indentation test is then numerically simulated by using extended Gurson–Tvergaard– Needleman (GTN) model, that accounts for the damage effects. The corresponding numerical results are validated by means of the experimental measurements. It turns out, that the GTN model quite successfully reflects closure of voids, and increase of material density during the nano-indentation.

Keywords:

radiation-induced damage, evolution of vacancy clusters, nano-indentation test, ion irradiation, radiation hardening

Affiliations:
Ustrzycka A.-IPPT PAN
Skoczeń B.-Cracow University of Technology (PL)
Nowak M.-IPPT PAN
Kurpaska Ł.-National Centre for Nuclear Research (PL)
Wyszkowska E.-National Centre for Nuclear Research (PL)
Jagielski J.-National Centre for Nuclear Research (PL)