Partner: J. Chmiel |
Recent publications
1. | Dolega-Dolegowski D.♦, Proniewska K.♦, Dolega-Dolegowska M.♦, Pręgowska A., Hajto-Bryk J.♦, Trojak M.♦, Chmiel J.♦, Walecki P.♦, Fudalej P.S.♦, Application of holography and augmented reality based technology to visualize the internal structure of the dental root - a proof of concept, Head&Face Medicine, ISSN: 1746-160X, DOI: 10.1186/s13005-022-00307-4, Vol.18, pp.12-1-6, 2022 Abstract: Background: The Augmented Reality (AR) blends digital information with the real world. Thanks to cameras, sensors, and displays it can supplement the physical world with holographic images. Nowadays, the applications of AR range from navigated surgery to vehicle navigation. Development: The purpose of this feasibility study was to develop an AR holographic system implementing Vertucci’s classification of dental root morphology to facilitate the study of tooth anatomy. It was tailored to run on the AR HoloLens 2 (Microsoft) glasses. The 3D tooth models were created in Autodesk Maya and exported to Unity software. The holograms of dental roots can be projected in a natural setting of the dental office. The application allowed to display 3D objects in such a way that they could be rotated, zoomed in/out, and penetrated. The advantage of the proposed approach was that students could learn a 3D internal anatomy of the teeth without environmental visual restrictions. Conclusions: It is feasible to visualize internal dental root anatomy with AR holographic system. AR holograms seem to be attractive adjunct for learning of root anatomy. Keywords:mixed reality, augmented reality, holography, tooth, dental root, root canal, visualization Affiliations:
|
Conference papers
1. | Proniewska K.♦, Pręgowska A., Dołęga-Dołegowski D.♦, Chmiel J.♦, Dudek D.♦, Three-dimensional operating room with unlimited perspective, MCSS 2020, 10th International Conference on Multimedia Communications, Services and Security, 2020-10-08/10-09, Kraków (PL), DOI: 10.1007/978-3-030-59000-0_26, Vol.1284, pp.351-361, 2020 Abstract: Apart fromoperating tables andmodern surgical instruments, themodern operating rooms are equipped with displays and video surveillance systems. The three-dimensional operating room allows users to watch medics perform surgery from different, individually chosen, points of view. For the first time, it is possible to reproduce/repeat the course of the operations and change the perspective or position, fromwhich it is observed. Here, we proposed a solution based on Microsoft HoloLens and Azure Kinect DK devices as remote support to patient management. The operating room is transferred to the digital form in real-time using Augmented Reality based technologies. Users can move around the digital place like a ghost in real space. The approach proposed allows users to see observe surgery from any point of view they want without disturbing the surgeon's workflow. They can change their positions, angle, and place of observation. All environmental restrictions disappear. The presented solution gives trainees a convenient opportunity to learn. It may make a significant contribution to improving the surgeontraining, patients' outcomes, and may allow virtual medical consultations during the surgery between specialists without them leaving their workplace. Keywords:3D operating room, augmented reality, HoloLens Affiliations:
|