Partner: Ichiro Ario

Hiroshima University (JP)

Recent publications
1.Keigo Y., Ario I., Zawidzki M., Yuta H., Optimization Problem of the size-scale for a Foldable Chain Scissors Structure based on Stress Analysis, Journal of Physics: Conference Series, ISSN: 1742-6596, DOI: 10.1088/1742-6596/2647/4/042005, Vol.2647, pp.1-9, 2024
Abstract:

Emergency bridges are used to restore the lifeline of damaged bridges after disasters. However, the design specification of existing emergency bridges do not afford rapid bridging. Therefore, a trial deployable bridge (Scissors Bridge) using a scissors structure that folds compactly has been experimentally produced. But, the assembly process for the bridge has not been considered and there are no practical design examples or design methods for scissors bridges. In this paper, as for existing bridges, we established a design method of scissors bridges when considering the live load. In addition, a general-purpose member cross-sectional dimension optimization method, aimed at minimizing weight, was developed and proposed. Considering the problem of insufficient strength of the scissors bridge, the optimum reinforcing pattern and its cross-sectional dimensions were determined through two methods of reinforcement and optimization of the cross-sectional dimension of the member. Finally, a trial of practical design calculation was performed using the results of the study to determine whether a scissors bridge satisfying the standard of the Specifications for Highway Bridges can be designed.

Keywords:

scissors structure,deployable bridge,stress analysis

Affiliations:
Keigo Y.-other affiliation
Ario I.-Hiroshima University (JP)
Zawidzki M.-IPPT PAN
Yuta H.-other affiliation
2.Ario I., Yamashita T., Chikahiro Y., Nakazawa M., Fedor K., Graczykowski C., Pawłowski P., Structural analysis of a scissor structure, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.134623, Vol.68, No.6, pp.1-14, 2020
Abstract:

This paper presents equilibrium mechanics and a finite element model for analysing a scissor structure that contains pivots with zero bending stiffness representing structural instability. The pivot at the centre of each structural unit, which is a feature of scissor structures, can be used to transfer the displacement between the units. It cannot, however, transfer the rotation between these units, and the angular stiffness must be considered independently for each unit. To construct a general model of the scissor structure, a scissor unit was developed using the left and right boundary connections of adjacent units to simulate a periodically symmetric structure. The proposed method allows us to obtain an accurate distribution of the internal forces and deflections without the use of special elements to account for central pivots.

Keywords:

scissor structure, deployable structure, smart bridge, scissors finite element, equilibrium mechanics

Affiliations:
Ario I.-Hiroshima University (JP)
Yamashita T.-Hiroshima University (JP)
Chikahiro Y.-Shinshu University (JP)
Nakazawa M.-Tohoku Gakuin University (JP)
Fedor K.-IPPT PAN
Graczykowski C.-IPPT PAN
Pawłowski P.-IPPT PAN
3.Chikahiro Y., Ario I., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Optimization of reinforcement layout of scissor-type bridge using differential evolution algorithm, Computer-Aided Civil and Infrastructure Engineering, ISSN: 1093-9687, DOI: 10.1111/mice.12432, Vol.34, No.6, pp.523-538, 2019
Abstract:

Scissors mechanisms are commonly used in safety engineering during the construction of temporary structures, owing to their inherent advantages of foldability, transformability, and reusability. We effectively utilized these scissors mechanism features to develop a lightweight, deployable emergency Mobile Bridge (MB) based on optimization, and control of the folding structure. Here, we discuss the problems of optimal reinforcement layout for the MB by formulating and solving three optimization problems, namely: (a) the load capacity maximization problem, (b) the weight minimization problem, and (c) coupling the load capacity maximization problem and the weight minimization problem. The potential benefits resulting from the application of reinforcement were evaluated using a combination of finite element analysis and an optimization algorithm based on the differential evolution method. The results demonstrate the significant positive influence of the additional reinforcing members. In particular, the limit load was increased by over 10 times, while the weight was decreased to approximately half. The proposed methodology enabled the development of a substantially improved version of the MB characterized by a higher load capacity and lower weight in comparison to the initial bridge design.

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN
4.Chikahiro Y., Ario I., Nakazawa M., Ono S., Holnicki-Szulc J., Pawłowski P., Graczykowski C., Watson A., Experimental and numerical study of full-scale scissor type bridge, Automation in Construction, ISSN: 0926-5805, DOI: 10.1016/j.autcon.2016.05.007, Vol.71, pp.171-180, 2016
Abstract:

Mobile Bridge™ is a deployable bridge that uses a scissors mechanism to achieve its useful structural form. The bridge has a compact size in its undeployed state and can be transported easily to where it is needed. Its rapid deployment makes this type of bridge very useful in areas struck by natural disasters by enabling vehicles to cross terrain that has been made impassable. In previous research, experiments and analyses were conducted on a small-scale bridge designed for pedestrians. In order to consider a bridge of increased size, it is necessary to assess whether design and analysis techniques of the small scale bridge are applicable to the full-scale one. In this paper, we consider a full-scale deployable bridge with a lower deck and two scissor units, that allows for a light vehicle to pass across. We have carried out a light vehicle loading test in order to investigate its basic structural characteristics. Furthermore, the paper presents the theoretical design method and numerical models based on the experimental work followed by validation and comparison with the obtained experimental values.

Keywords:

Full-scale Mobile Bridge, Scissor type of emergency bridge, Scissors mechanism, Vehicle loading test

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Nakazawa M.-Tohoku Gakuin University (JP)
Ono S.-Japan Construction Method and Machinery Research Institute (JP)
Holnicki-Szulc J.-IPPT PAN
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Watson A.-Loughborough University (GB)

List of chapters in recent monographs
1.
417
Chikahiro Y., Ario I., Nakazawa M., Ono S., Holnicki-Szulc J., Pawłowski P., Graczykowski C., Mobile and Rapidly Assembled Structures IV, rozdział: An Experimental Study On The Design Method Of A Real-sized Mobile Bridge For A Moving Vehicle, N. De Temmerman,Vrije, C.A. Brebbia, WITPress, pp.93-106, 2014

Conference papers
1.Yoshida K., Ario I., Zawidzki M., Hama Y., Optimization Problem of the size-scale for a Foldable Chain Scissors Structure based on Stress Analysis, EURODYN2023, 2023-07-02/07-05, Delft (NL), pp.1-9, 2023
Abstract:

Emergency bridges are used to restore the lifeline of damaged bridges after
disasters. However, the design specification of existing emergency bridges do not afford rapid
bridging. Therefore, a trial deployable bridge (Scissors Bridge) using a scissors structure that
folds compactly has been experimentally produced. But, the assembly process for the bridge has
not been considered and there are no practical design examples or design methods for scissors
bridges. In this paper, as for existing bridges, we established a design method of scissors bridges
when considering the live load. In addition, a general-purpose member cross-sectional dimension
optimization method, aimed at minimizing weight, was developed and proposed. Considering
the problem of insufficient strength of the scissors bridge, the optimum reinforcing pattern
and its cross-sectional dimensions were determined through two methods of reinforcement and
optimization of the cross-sectional dimension of the member. Finally, a trial of practical design
calculation was performed using the results of the study to determine whether a scissors bridge
satisfying the standard of the Specifications for Highway Bridges can be designed.

Affiliations:
Yoshida K.-other affiliation
Ario I.-Hiroshima University (JP)
Zawidzki M.-IPPT PAN
Hama Y.-other affiliation
2.Zawidzki M., Ario I., Extremely Modular Truss-Z Pedestrian Ramp, The 5th National Convention of the Japan Society of Civil Engineers, 2023-09-14/09-15, Hiroshima (JP), pp.1-2, 2023
3.Zawidzka E., Chikahiro Y., Ario I., Extremely Modular Arm-Z manipulator, The 5th National Convention of the Japan Society of Civil Engineers, 2023-09-14/09-15, Hiroshima (JP), pp.1-2, 2023
4.Chikahiro Y., Ario I., Pawłowski P., Graczykowski C., Nakazawa M., Holnicki-Szulc J., Ono S., Dynamics of the scissors-type Mobile Bridge, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), DOI: 10.1016/j.proeng.2017.09.339, Vol.199, pp.2919-2924, 2017
Abstract:

We have experienced many times a phenomenon in which a bridge is washed away due to a typhoon, heavy rain in the rainy season, localized torrential rain, tsunami, and other flood disasters, or in which a bridge is damaged by an earthquake or a tremor. There is accordingly increasing demand for new technology and science to restore bridges that have been washed away or damaged. The paper presents a new type of emergency bridge, called Mobile Bridge™(MB), which can be quickly constructed in case of damages after a natural disaster. The concept of the bridge is based on the application of scissor-type mechanism, which provides its rapid deployment. Up to now several experimental MBs of different size were constructed and tested. The presented research reviews fundamental numerical and experimental results for the MB version 4.0 (MB4.0). Experimental testing included strain and acceleration measurements in free and forced loading conditions. From these results, it was possible to estimate basic dynamic characteristics of the bridge. Besides, in order to provide a basis for development of new construction methods for structural reinforcement and suppression of vibrations, various numerical analyses were conducted. The conducted research allows for a better and safer design of the movable and foldable full-scale bridge, the MB.

Keywords:

deployable bridge, scissors-type bridge, emergency bridge, light-weight structure, temporary bridge

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Nakazawa M.-Tohoku Gakuin University (JP)
Holnicki-Szulc J.-IPPT PAN
Ono S.-Japan Construction Method and Machinery Research Institute (JP)
5.Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, Berlin (DE), DOI: 10.24904/footbridge2017.09352, pp.1-6, 2017
Abstract:

The paper presents a new type of emergency bridge, which can be quickly constructed in case of damages after a natural disaster. The concept of the bridge is based on the application of scissor-type mechanism, which provides its rapid deployment. In case of deployable structures apart from static analysis of different configurations of expansion, it is very important to investigate the dynamic behavior of the system. High compliance and flexibility of the scissors-type bridge may influence user's comfort and safety in case of heavy dynamic loads such as human induced impacts, wind gusts or earthquakes. Up to now, the authors constructed several types of the experimental MBs. The presented research reviews fundamental numerical and experimental results for the Mobile Bridge 4.0. Experimental testing included strain and acceleration measurements in free and forced loading conditions. From these results, it was possible to estimate basic mechanics characteristics, that is statics and dynamic property, of the bridge. The conducted research allows for a better and safer design of the structure of the Mobile Bridge.

Keywords:

Deployable Bridge, Scissors-type bridge, Emergency Bridge, Dynamic property, Natural frequency, Acceleration measurement

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Adachi K.-Hiroshima University (JP)
Shimizu S.-Shinshu University (JP)
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN
6.Pawłowski P., Graczykowski C., Holnicki-Szulc J., Ario I., Smart, deployable skeletal structures for safety engineering, SMART2013, 6th ECCOMAS Thematic Conference on Smart Structures and Materials, 2013-09-03/09-06, Turyn (IT), pp.1-10, 2013
Abstract:

This contribution presents the concept of smart, deployable skeletal structures along with existing and prospective applications. The first part introduce s the concept of multi-folding, which is the basis for the design of all smart deployable skeletal structures. In the second part three diverse innovative applications are described: deployable mobile bridge, adaptive impact absorber and controllable valve.

Keywords:

smart skeletal structures, adaptive impact absorption, safety engineering

Affiliations:
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN
Ario I.-Hiroshima University (JP)

Conference abstracts
1.Ario I. , Ma D., Ma H., Zawidzki M., Advanced Bifurcation Analysis Using Modified Stiffness Method of Group Theoretic Imperfections, ICTAM 2024, The 26th International Congress of Theoretical and Applied Mechanics, 2024-08-25/08-30, Daegu (KR), pp.1-2, 2024
Abstract:

Multiple bifurcations due to symmetry are often encountered when analyzing nonlinear motifs of nano-mechanics or structures with axial multiple symmetry. The location of multiple bifurcation points and bifurcation path tracing become problems in numerical analysis. In this paper, as a solution to this problem, the a priori information of group-theoretic bifurcation theory is applied. By utilizing the irreducible representation of the dihedral group, we propose to represent the initial imperfection vectors according to the difference in symmetry of the structural system. A part of the tangent stiffness matrix is corrected by coordinate transformations, and
the modified stiffness method is proposed to separate the multiple bifurcation points to a single point in the direction of the bifurcation path. As a numerical analysis example, a bifurcation analysis of a fullerene structure is performed to demonstrate the feasibility of the presented method.

Keywords:

Graph-theory, Bifurcation, Imperfection, Fulerene, Dihedral group

Affiliations:
Ario I. -Hiroshima University (JP)
Ma D.-other affiliation
Ma H.-other affiliation
Zawidzki M.-IPPT PAN
2.Zawidzki M., Ario I., The 5th National Convention of the Japan Society of Civil Engineers, JSCE 2023, JSCE Japan Society of Civil Engineers 2023 Annual Meeting, 2023-09-14/09-15, Hiroshima (JP), pp.1-3, 2023
3.Chikahiro Y., Ario I., Pawłowski P., Graczykowski C., Shimizu S., Numerical Optimization of Deployable Scissors Structure with Reinforcing Chord Members, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.370-371, 2018
4.Chikahiro Y., Ario I., Adachi K., Shimizu S., Zenzai S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of scissoring bridge for disaster relief, ENOC 2017, 9th European Nonlinear Dynamics Conference, 2017-06-25/06-30, Budapest (HU), pp.1-2, 2017
Abstract:

The world has seen many kinds of natural disasters, which have critically influenced the residents' lives by causing damage to infrastructure. To realize rapid rescue efforts in an emergency situation, we propose a deployable emergency bridge, called Mobile Bridge TM [1], based on the theory of foldable structures[2]and the concept of Multi-Folding Microstructures (MFM)[3]. The current research presents the fundamental,numerical and experimental results obtained for the pedestrian and vehicle Mobile Bridges. In this paper, it is considered the localized linearization problem with the fixed an angle although this bridge contains a geometrical nonlinearity of scissors structure. Additionally, a seismic response analysis is conducted for the case where the Mobile Bridge is used in the disaster area as an emergency bridge. This allows for a better and safer structural design of the Mobile Bridge, which is patented in [4],[5].

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Adachi K.-Hiroshima University (JP)
Shimizu S.-Shinshu University (JP)
Zenzai S.-Shinshu University (JP)
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN
5.Chikahiro Y., Ario I., Pawłowski P., Graczykowski C., Nakazawa M., Holnicki-Szulc J., Ono S., Dynamics of the scissors-type Mobile Bridge, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), pp.199-199, 2017
6.Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, Berlin (DE), pp.1-6, 2017
Abstract:

The paper presents a new type of emergency bridge, which can be quickly constructed in case of damages after a natural disaster. The concept of the bridge is based on the application of scissor-type mechanism, which provides its rapid deployment. In case of deployable structures apart from static analysis of different configurations of expansion, it is very important to investigate the dynamic behavior of the system. High compliance and flexibility of the scissors-type bridge may influence user's comfort and safety in case of heavy dynamic loads such as human induced impacts, wind gusts or earthquakes. Up to now, the authors constructed several types of the experimental MBs. The presented research reviews fundamental numerical and experimental results for the Mobile Bridge 4.0. Experimental testing included strain and acceleration measurements in free and forced loading conditions. From these results, it was possible to estimate basic mechanics characteristics, that is statics and dynamic property, of the bridge. The conducted research allows for a better and safer design of the structure of the Mobile Bridge.

Keywords:

Deployable Bridge, Scissors-type bridge, Emergency Bridge, Dynamic property, Natural frequency, Acceleration measurement

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Adachi K.-Hiroshima University (JP)
Shimizu S.-Shinshu University (JP)
Pawłowski P.-other affiliation
Graczykowski C.-other affiliation
Holnicki-Szulc J.-other affiliation
7.Chikahiro Y., Ario I., Holnicki-Szulc J., Pawłowski P., Graczykowski C., A Study on Optimal Reinforcement of Scissor Type of Bridge with Additional Strut Members, ICCEE 2016, International Conference on Civil and Environmental Engineering, 2016-10-17/10-19, Hiroshima (JP), pp.1-2, 2016
Keywords:

scissor type of bridge, emergency bridge, strut reinforcement, sectional optimization

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Holnicki-Szulc J.-IPPT PAN
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
8.Chikahiro Y., Ario I., Nakazawa M., Ono S., Holnicki-Szulc J., Pawłowski P., Graczykowski C., Structural Analysis and Experimental Study for realsized MB Travelable Vehicles, ENOC 2014, 8th European Nonlinear Dynamics Conference, 2014-07-06/07-11, Wiedeń (AT), pp.1-2, 2014
Abstract:

Many natural disasters such as earthquakes, floods, torrential rains occur around the world, and we to undertake quick rescue actions. However, there are many recovery problems because of the occurrence of secondary disasters at each rescue worksite.So, from the previous study of optimal structures and control regulation of MFM[1]-[2], we propose a new type of foldable bridge with scissors structure called Mobile Bridge[3]. Applying scissors mechanism to bridge form, Mobile Bridge provides not only mobility but also good structural performance, because the whole bridge can be expand or fold quickly. In this paper, we discuss the vehicles passing test on the real scale Mobile Bridge in order to evaluate the design method and application limits.

Keywords:

Mobile Bridge, deployable structures, temporary bridges, scissors-type structures

Affiliations:
Chikahiro Y.-Shinshu University (JP)
Ario I.-Hiroshima University (JP)
Nakazawa M.-Tohoku Gakuin University (JP)
Ono S.-Japan Construction Method and Machinery Research Institute (JP)
Holnicki-Szulc J.-IPPT PAN
Pawłowski P.-IPPT PAN
Graczykowski C.-IPPT PAN
9.Holnicki-Szulc J., Graczykowski C., Pawłowski P., Ario I., High Performance Valve for Adaptive Pneumatic Impact Absorbers, SolMech 2012, 38th Solid Mechanics Conference, 2012-08-27/08-31, Warszawa (PL), pp.1-2, 2012
Abstract:

Dissipation of the energy in mechanical systems is a vitally important engineering and scientific problem. Current stringent safety requirements enforce substantial change of methods of structural design and application of new solutions and technologies which ensure structural integrity.
Currently applied passive safety systems are typically not equipped with control devices. Their dynamic characteristics remains unaltered and thus it is well adjusted to a narrow range of actual loadings. In case of impact loading, it is highly advantageous to apply systems of Adaptive Impact Absorption (AIA), which are capable of fast change of the dynamic characteristics. Recent fast development of the material technologies and, in particular, development in the field of functional (smart) materials and electronic measurement and control systems had created new possibilities of practical applications of the AIA systems.
During the adaptation process the choice of optimal control strategy is followed by adjustment of the dynamic characteristics of adaptive elements of the absorber. These elements can entirely made of functional materials (as e.g. shape memory alloys) or, alternatively, they can be equipped with controllable devices, so-called structural fuses, which provide controlled response of the element. Depending on type of applied control, the changes of structural parameters occur only once (usually before impact) or they are controlled in real time during the impact process.
The systems of Adaptive Impact Absorption can be effectively used to increase the level of safety during the action of the impact loading. In particular, very promising results are obtained with the use of adaptive inflatable structures. However, the possibilities of their practical applications are limited due to the lack methods allowing for the efficient and fast control of the gas flow during impact.
The presented work focuses on the pneumatic adaptive impact absorbing system equipped with a novel, high performance valve, which utilizes bistable snap-through effect. Snap-through effects are mainly the subject of theoretical analysis and they do not find many practical engineering applications.

Keywords:

smart structures, high performance valves, adaptive pneumatic systems, adaptive impact absorption

Affiliations:
Holnicki-Szulc J.-IPPT PAN
Graczykowski C.-IPPT PAN
Pawłowski P.-IPPT PAN
Ario I.-Hiroshima University (JP)

Patents
Filing No./Date
Filing Publication
Autor(s)
Title
Protection Area, Applicant Name
Patent Number
Date of Grant
pdf
14895015.7
2014-06-17
WO2015193930
2015-12-23
Ario I., Tanaka Y., Chikahiro Y., Nakatani S., Tanikura I., Ono S., Akamatsu T., Sato T., Hanaki S., Nakamura S.
Scissors-type retractable structure
EPO, Hiroshima University, Sankyo Tateyama, Inc., Hoshikei Kinzoku Kogyo Co., Ltd., Japan Construction Machinery and Construction Association, Institute of Fundamental Technological Research Polish Academy of Science
EP3147407
Bulletin 2019/32
2019-08-07