Partner: G. Savitskij |
|
Recent publications
1. | Świątek Z.♦, Michalec M.♦, Levintant-Zayonts N., Bonarski J.♦, Budziak A.♦, Bonchyk O.♦, Savitskij G.♦, Structural Evolution of Near-Surface Layers in NiTi Alloy Caused by an Ion Implantation, ACTA PHYSICA POLONICA A, ISSN: 0587-4246, Vol.120, No.1, pp.75-78, 2011 Abstract: The results of X-ray diffraction studies on structural changes in the near-surface layers in the NiTi alloy caused by nitrogen-ion implantation with the energy E = 50 keV and the fluence D = 1018cm°2 are presented. X-ray diffractometry, using the Philips diffractometer type X’Pert in the Bragg–Brentano geometry, was used to identify the phase composition of NiTi alloy. For layer by layer analysis of structural changes in the near-surface layers, the D8 Discover Bruker diffractometer with polycapilar beam optics was used. The ion-implanted NiTi alloy in the near-surface layer exhibits five phases: the dominating austenite phase, two martensitic phases and a small amount of the Ni4Ti3 and NTi phases. Along with the decreasing thickness of the near-surface layer investigated in material an increasing fraction of the Ni4Ti3 and NTi phases was observed. With the thickness of this layer about 340 nm, besides still existing the austenite, Ni4Ti3 and NTi phases, only one martensitic phase is present in the alloy. Further decrease of the thickness of the near-surface layer to about 170 nm leads to the increasing fraction of the Ni4Ti3 and NTi phases. Keywords:X-ray diffraction, ion implantation, shape memory alloy, nitinol, phase composition Affiliations:
| ||||||||||||||||||||||
2. | Świątek Z.♦, Levintant-Zayonts N., Michalec M.♦, Czeppe T.♦, Lipinski M.♦, Bonchyk O.♦, Savitskij G.♦, Creation of wear-resistant near-surface-layers with inhomogeneous structure on NiTi alloy by ion implantation technology, Physics Procedia, ISSN: 1875-3892, DOI: 10.1016/j.phpro.2010.11.077, Vol.10, pp.69-76, 2010 Abstract: In the present study we report the changes in the modified near-surface layer on NiTi shape memory alloy, caused by ion implantation as well as their influence on the structure and mechanical properties of this material. Experimental results of an inhomogeneous structure and tribological properties of implanted NiTi are discussed in this paper. Keywords:shape memory NiTi alloy, Ion implantation, DSC, X-ray diffractometry, TEM Affiliations:
| ||||||||||||||||||||||
3. | Czeppe T.♦, Levintant-Zayonts N., Świątek Z.♦, Michalec M.♦, Bonchyk O.♦, Savitskij G.♦, Inhomogeneous structure of near-surface layers in the ion-implanted niti alloy, VACUUM, ISSN: 0042-207X, DOI: 10.1016/j.vacuum.2009.01.066, Vol.83, No.Supplement 1, pp.S214-S219, 2009 Abstract: This paper reports the application of nitrogen ion implantation for modification of a shape memory alloy. It is known that the problem of creating a protective surface coating for the shape memory alloy is the most acute for potential applications of this material. Thus, the problem of increasing surface protective properties and, at the same time, simultaneous preservation of functional properties of shape memory materials is a subject of research and development [Pelletier H, Muller D, Mille P, Grob J. Surf Coat Technol 2002;158:309.]. The surface characterization of nitrogen implanted (fluence 1018 cm−2 and energy 50 keV) equiatomic commercial NiTi alloy samples was performed with the assistance of high resolution transmission electron microscopy (HTEM) techniques and modifications of phase composition before and after irradiation are studied at room and martensitic transformation temperatures by X-ray diffraction methods. Differential scanning calorimetry (DSC, TA Instruments) was used to characterize the transformation sequence and transformation temperatures for the initial and surface-modified materials. Experimental results of an inhomogeneous structure of near-surface layers in the ion-implanted NiTi alloy are discussed in this paper Keywords:Shape memory NiTi alloy, Ion implantation, DSC, X-ray diffractometry, TEM Affiliations:
|