Partner: Ashish Singh |
|
Recent publications
1. | Manippady S.R.♦, Singh A.♦, Rout C.S.♦, Samal A.K.♦, Saxena M.♦, Partially graphitized Iron-carbon hybrid composite as electrochemical supercapacitor material, ChemElectroChem, ISSN: 2196-0216, DOI: 10.1002/celc.202000377, Vol.7, No.8, pp.1928-1934, 2020 Abstract: The conversion of biomass into valuable carbon composites as an efficient non-precious energy storage electrode material has elicited extensive research interest. An as-synthesized partially graphitized iron oxide-carbon composite material (Fe3O4/Fe3C@C) shows excellent properties as an electrode material for supercapacitor applications. X-ray diffraction analysis, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analysis are used to study the structural, compositional and surface areal properties. The electrode material shows a specific surface area of 827.4 m2/g. Owing to the synergistic effect of the graphitic layers with iron oxide/carbide, Fe3O4/Fe3C@C hybrid electrode materials display a high performance when used in supercapacitors, with an excellent capacity of 878 F/g at a current density of 5 A/g (3-electrode) and 211.6 F/g at a current density of 0.4 A/g (2-electrode) in 6 M KOH electrolyte with good cyclic stability. Keywords:Bagasse, supercapacitor, composite material, iron carbide, iron oxide Affiliations:
| |||||||||||||||||||
2. | Manippady S.R.♦, Singh A.♦, Basavaraja B.M.♦, Samal A.K.♦, Srivastava S.♦, Saxena M.♦, Iron-Carbon Hybrid Magnetic Nanosheets for Adsorption-Removal of Organic Dyes and 4-Nitrophenol from Aqueous Solution, ACS Applied Nano Materials, ISSN: 2574-0970, DOI: 10.1021/acsanm.9b02348, Vol.3, No.2, pp.1571-1582, 2020 Abstract: Here, we report a non-precious mesoporous adsorbent obtained from the carbonization of bagasse. The material shows pH dependent an impressive adsorbent property for cationic, anionic and commercially used dyes along with an organic contaminant (4-nitrophenol) in water. The adsorbent shows specific surface area of ~462 m2 g-1 and the porous layered structure as confirmed by gas adsorption and microscopic techniques, respectively. Further, pH triggered adsorption of Methylene blue (MB, cationic dye), Congo red (CR, anionic dye) and commercial hair dye were studied. The results show >96% adsorption for CR and MB within 24 min at pH 2 and pH 8, respectively. Moreover, fast adsorption response, 92.6% in 20 min, was obtained for a commercially used hair dye and demonstrates the practical applicability of the material for waste water remediation. Under experimental conditions, adsorbent shows ultrafast adsorption kinetics (4 min to achieve equilibrium state with 99.5% adsorption) for 4-nitrophenol from water. Notably, the adsorbent show structural stability, easily separable with an external magnetic field and recyclability with ~85% efficiency even after 5th cycle. Keywords:Iron-carbon composite, adsorption, bagasse, hair dye, Methylene blue, Congo Red, 4-Nitrophenol Affiliations:
|