Partner: Abhyudai Singh

University of Delaware (US)

Recent publications
1.Topolewski P., Zakrzewska K.E., Walczak J., Nienałtowski K., Müller-Newen G., Singh A., Komorowski M., Phenotypic variability, not noise, accounts for most of the cell-to-cell heterogeneity in IFN-γ and oncostatin M signaling responses, Science Signaling, ISSN: 1945-0877, DOI: 10.1126/scisignal.abd9303, Vol.15, No.721, pp.eabd9303-1-16, 2022
Abstract:

Cellular signaling responses show substantial cell-to-cell heterogeneity, which is often ascribed to the inherent randomness of biochemical reactions, termed molecular noise, wherein high noise implies low signaling fidelity. Alternatively, heterogeneity could arise from differences in molecular content between cells, termed molecular phenotypic variability, which does not necessarily imply imprecise signaling. The contribution of these two processes to signaling heterogeneity is unclear. Here, we fused fibroblasts to produce binuclear syncytia to distinguish noise from phenotypic variability in the analysis of cytokine signaling. We reasoned that the responses of the two nuclei within one syncytium could approximate the signaling outcomes of two cells with the same molecular content, thereby disclosing noise contribution, whereas comparison of different syncytia should reveal contribution of phenotypic variability. We found that ~90% of the variance in the primary response (which was the abundance of phosphorylated, nuclear STAT) to stimulation with the cytokines interferon-γ and oncostatin M resulted from differences in the molecular content of individual cells. Thus, our data reveal that cytokine signaling in the system used here operates in a reproducible, high-fidelity manner.

Affiliations:
Topolewski P.-IPPT PAN
Zakrzewska K.E.-IPPT PAN
Walczak J.-IPPT PAN
Nienałtowski K.-IPPT PAN
Müller-Newen G.-RWTH Aachen University (DE)
Singh A.-University of Delaware (US)
Komorowski M.-IPPT PAN

Conference papers
1.Vahdat Z., Nienałtowski K., Farooq Z., Komorowski M., Singh A., Information processing in unregulated and autoregulated gene expression, ECC20, European Control Conference, 2020-05-12/05-15, Saint Petersburg, virtual (RU), DOI: 10.23919/ECC51009.2020.9143689, pp.258-263, 2020
Abstract:

How living cells can reliably process biochemical cues in the presence of molecular noise is not fully understood. Here we investigate the fidelity of information transfer in the expression of a single gene. We use the established model of gene expression to examine how precisely the protein levels can be controlled by two distinct mechanisms: (i) the transcription rate of the gene, or (ii) the translation rate for the corresponding mRNA. The fidelity of gene expression is quantified with the information-theoretic notion of information capacity. Derived information capacity formulae reveal that transcriptional control generally provides a tangibly higher capacity as compared to the translational control. We next introduce negative feedback regulation in gene expression, where the protein directly inhibits its own transcription. While negative feedback reduces noise in the level of the protein for a given input signal, it also decreases the input-to-output sensitivity. Our results show that the combined effect of these two opposing forces is a reduced capacity in the presence of feedback. In summary, our analysis presents analytical quantification of information transfer in simple gene expression models, which provides insight into the fidelity of basic gene expression control mechanisms.

Affiliations:
Vahdat Z.-University of Delaware (US)
Nienałtowski K.-other affiliation
Farooq Z.-IPPT PAN
Komorowski M.-IPPT PAN
Singh A.-University of Delaware (US)