Partner: Janusz Szemraj |
|
Ostatnie publikacje
1. | Czarny P.♦, Kwiatkowski D.♦, Toma M.♦, Kubiak J.♦, Sliwinska A.♦, Talarowska M.♦, Szemraj J.♦, Maes M.♦, Galecki P.♦, Sliwinski T.♦, Impact of single-nucleotide polymorphisms of base excision repair genes on DNA damage and efficiency of DNA repair in recurrent depression disorder, MOLECULAR NEUROBIOLOGY, ISSN: 0893-7648, DOI: 10.1007/s12035-016-9971-6, Vol.54, No.6, pp.4150-4159, 2017 Streszczenie: Elevated level of DNA damage was observed in patients with depression. Furthermore, single nucleotide polymorphisms (SNPs) of base excision repair (BER) genes may modulate the risk of this disease. Therefore, the aim of this study was to delineate the association between DNA damage, DNA repair, the presence of polymorphic variants of BER genes, and occurrence of depression. The study was conducted on peripheral blood mononuclear cells of 43 patients diagnosed with depression and 59 controls without mental disorders. Comet assay was used to assess endogenous (oxidative) DNA damage and efficiency of DNA damage repair (DRE). TaqMan probes were employed to genotype 12 SNPs of BER genes. Endogenous DNA damage was higher in the patients than in the controls, but none of the SNPs affected its levels. DRE was significantly higher in the controls and was modulated by BER SNPs, particularly by c.977C > G-hOGG1, c.972G > C-MUTYH, c.2285T > C-PARP1, c.580C > T-XRCC1, c.1196A > G-XRCC1, c.444T > G-APEX1, c.-468T > G-APEX1, or c.*50C > T-LIG3. Our study suggests that both oxidative stress and disorders in DNA damage repair mechanisms contribute to elevated levels of DNA lesions observed in depression. Lower DRE can be partly attributed to the presence of specific SNP variants. Słowa kluczowe: Recurrent depression disorder, DNA damage, DNA repair, Oxidative stress, Base excision repair, Single nucleotide polymorphism Afiliacje autorów:
| 40p. | |||||||||||||||||||||||||||||||||||||||||||
2. | Sliwinska A.♦, Sitarek P.♦, Toma M.♦, Czarny P.♦, Synowiec E.♦, Krupa R.♦, Wigner P.♦, Bialek K.♦, Kwiatkowski D.♦, Korycinska A.♦, Majsterek I.♦, Szemraj J.♦, Galecki P.♦, Sliwinski T.♦, Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status, PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, ISSN: 0278-5846, DOI: 10.1016/j.pnpbp.2017.07.010, Vol.79, pp.311-316, 2017 Streszczenie: Background: Neurodegeneration in Alzheimer's disease can be caused by accumulation of oxidative DNA damage resulting from altered expression of genes involved in the base excision repair system (BER). Promoter methylation can affect the profile of BER genes expression. Decreased expression of BER genes was observed in the brains of AD patients. Słowa kluczowe: Alzheimer's disease, DNA base excision repair genes, Gene expression, Promoter methylation Afiliacje autorów:
| 35p. | |||||||||||||||||||||||||||||||||||||||||||
3. | Kwiatkowski D.♦, Czarny P.♦, Toma M.♦, Jurkowska N.♦, Śliwinska A.♦, Drzewoski J.♦, Bachurska A.♦, Szemraj J.♦, Maes M.♦, Berk M.♦, Su K.P.♦, Gałecki P.♦, Śliwiński T.♦, Associations between DNA Damage, DNA Base Excision Repair Gene Variability and Alzheimer's Disease Risk, DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, ISSN: 1420-8008, DOI: 10.1159/000443953, Vol.41, No.3-4, pp.152-171, 2016 Streszczenie: Background: Increased oxidative damage to DNA is one of the pathways involved in Alzheimer's disease (AD). Insufficient base excision repair (BER) is in part responsible for increased oxidative DNA damage. The aim of the present study was to assess the effect of polymorphic variants of BER-involved genes and the peripheral markers of DNA damage and repair in patients with AD. Material and Methods: Comet assays and TaqMan probes were used to assess DNA damage, BER efficiency and polymorphic variants of 12 BER genes in blood samples from 105 AD patients and 130 controls. The DNA repair efficacy (DRE) was calculated according to a specific equation. Results: The levels of endogenous and oxidative DNA damages were higher in AD patients than controls. The polymorphic variants of XRCC1 c.580C>T XRCC1 c.1196A>G and OGG1 c.977C>G are associated with increased DNA damage in AD. Conclusion: Our results show that oxidative stress and disturbances in DRE are particularly responsible for the elevated DNA lesions in AD. The results suggest that oxidative stress and disruption in DNA repair may contribute to increased DNA damage in AD patients and risk of this disease. In addition, disturbances in DRE may be associated with polymorphisms of OGG1 and XRCC1. Słowa kluczowe: DNA damage, DNA base excision repair, Alzheimer's disease risk, Dementia, Oxidative stress Afiliacje autorów:
| 30p. | |||||||||||||||||||||||||||||||||||||||||||
4. | Sliwinska A.♦, Kwiatkowski D.♦, Czarny P.♦, Toma M.♦, Wigner P.♦, Drzewoski J.♦, Fabianowska-Majewska K.♦, Szemraj J.♦, Maes M.♦, Gałecki P.♦, Śliwiński T.♦, The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer's disease, JOURNAL OF THE NEUROLOGICAL SCIENCES, ISSN: 0022-510X, DOI: 10.1016/j.jns.2016.07.008, Vol.368, pp.155-159, 2016 Streszczenie: Evidence indicates that oxidative stress contributes to neuronal cell death in Alzheimer's disease (AD). Increased oxidative DNA damage I, as measured with 8-oxoguanine (8-oxoG), and reduced capacity of proteins responsible for removing of DNA damage, including 8-oxoguanine DNA glycosylase 1 (OGG1), were detected in brains of AD patients. In the present study we assessed peripheral blood biomarkers of oxidative DNA damage, i.e. 8-oxoG and OGG1, in AD diagnosis, by comparing their levels between the patients and the controls. Our study was performed on DNA and serum isolated from peripheral blood taken from 100 AD patients and 110 controls. For 8-oxoG ELISA was employed. The OGG1 level was determined using ELISA and Western blot technique. Levels of 8-oxoG were significantly higher in DNA of AD patients. Both ELISA and Western blot showed decreased levels of OGG1 in serum of AD patients. Our results show that oxidative DNA damage biomarkers detected in peripheral tissue could reflect the changes occurring in the brain of patients with AD. These results also suggest that peripheral blood samples may be useful to measure oxidative stress biomarkers in AD. Słowa kluczowe: Alzheimer's disease, Oxidative stress, Oxidative DNA damage, 7 8-dihydrodeoxyguanosine (8-oxoG), DNA base excision repair, 8-oxoguanine DNA glycosylase 1 (OGG1) Afiliacje autorów:
| 25p. | |||||||||||||||||||||||||||||||||||||||||||
5. | Kwiatkowski D.♦, Czarny P.♦, Toma M.♦, Korycinska A.♦, Sowinska K.♦, Gałecki P.♦, Bachurska A.♦, Bielecka-Kowalska A.♦, Szemraj J.♦, Maes M.♦, Śliwiński T.♦, Association between single nucleotide polymorphisms of hOGG1, NEIL1, APEX1, FEN1, LIG1 and LIG3 genes and Alzheimer’s disease risk, NEUROPSYCHOBIOLOGY, ISSN: 0302-282X, DOI: 10.1159/000444643, Vol.73, No.2, pp.98-107, 2016 Streszczenie: Background: One of the factors that contribute to Alzheimer's disease (AD) is the DNA damage caused by oxidative stress and inflammation that occurs in nerve cells. It has been suggested that the risk of AD may be associated with an age dependent reduction of the DNA repair efficiency. Base excision repair (BER) is, among other things, a main repair system of oxidative DNA damage. One of the reasons for the reduced efficiency of this system may be single-nucleotide polymorphisms (SNP) of the genes encoding its proteins. Methods: DNA for genotyping was obtained from the peripheral blood of 281 patients and 150 controls. In the present study, we evaluated the impact of 8 polymorphisms of 6 BER genes on the AD risk. We analyzed the following SNP: c.-468T>G and c.444T>G of APEX1, c.*50C>T and c.*83A>C of LIG3, c.977C>G of OGG1, c.*283C>G of NEIL1, c.-441G>A of FEN1, and c.-7C>T of LIG1. Results: We showed that the LIG1 c.-7C>T A/A and LIG3 c.*83A>C A/C variants increased, while the APEX1 c.444T>G G/T, LIG1 c.-7C>T G/, LIG3 c.*83A>C C/C variants reduced, the AD risk. We also evaluated the relation between gene-gene interactions and the AD risk. We showed that combinations of certain BER gene variants such as c.977C>Gxc.*50C>T CC/CT, c./111T>Gxc.*50C>T GG/CT, c.-468T>Gxc.*50C>T GG/CT, c.-441G>Ac.*50C>Txc.*50C>T GG/CT, c.*83A>Cx c.*50C>T CT/AC, and c.-7C>Txc.*50C>T CT/GG can substantially positively modulate the risk of AD. Conclusions: In conclusion, we revealed that polymorphisms of BER genes may have a significant effect on the AD risk, and the presence of polymorphic variants may be an important marker for AD. Słowa kluczowe: Alzheimer's disease, Base excision repair, Polymorphisms Afiliacje autorów:
| 25p. | |||||||||||||||||||||||||||||||||||||||||||
6. | Czarny P.♦, Kwiatkowski D.♦, Toma M.♦, Gałecki P.♦, Orzechowska A.♦, Bobińska K.♦, Bielecka-Kowalska A.♦, Szemraj J.♦, Berk M.♦, Anderson G.♦, Śliwiński T.♦, Single-nucleotide polymorphisms of genes involved in repair of oxidative DNA damage and the risk of recurrent depressive disorder, Medical Science Monitor, ISSN: 1643-3750, DOI: 10.12659/MSM.898091, Vol.22, pp.4455-4474, 2016 Streszczenie: Background: Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Słowa kluczowe: Depression, DNA Repair, Inflammation, Oxidative Stress, Polymorphism, Single Nucleotide Afiliacje autorów:
| 15p. | |||||||||||||||||||||||||||||||||||||||||||
7. | Czarny P.♦, Kwiatkowski D.♦, Gałecki P.♦, Talarowska M.♦, Orzechowska A.♦, Bobińska K.♦, Bielecka-Kowalska A.♦, Szemraj J.♦, Maes M.♦, Su K.P.♦, Śliwiński T.♦, Association between single nucleotide polymorphisms of MUTYH, hOGG1 and NEIL1 genes, and depression, JOURNAL OF AFFECTIVE DISORDERS, ISSN: 0165-0327, DOI: 10.1016/j.jad.2015.05.044, Vol.184, pp.90-96, 2015 Streszczenie: Background: An elevated levels oxidative modified DNA bases and a decreased efficiency of oxidative DNA damage repair were found in patients with depression disorders, including recurrent type (rDD). The glycosylases are involved in base excision repair (BER), which eliminates oxidative DNA damage. Therefore, we genotyped the single nucleotide polymorphisms (SNPs) of genes encoding three glycosylases: hOGG1, MUTYH and NEILL Słowa kluczowe: Depression, Glycosylases, BER, DNA repair, DNA damage Afiliacje autorów:
| 35p. | |||||||||||||||||||||||||||||||||||||||||||
8. | Kwiatkowski D.♦, Czarny P.♦, Gałecki P.♦, Bachurska A.♦, Talarowska M.♦, Orzechowska A.♦, Bobińska K.♦, Bielecka-Kowalska A.♦, Pietras T.♦, Szemraj J.♦, Maes M.♦, Śliwiński T.♦, Variants of Base Excision Repair Genes MUTYH, PARP1 and XRCC1 in Alzheimer's Disease Risk, NEUROPSYCHOBIOLOGY, ISSN: 0302-282X, DOI: 10.1159/000381985, Vol.71, No.3, pp.176-186, 2015 Streszczenie: Background: Many clinical studies have shown that oxidative stress pathways and the efficiency of the oxidative DNA damage base excision repair (BER) system are associated with the pathogenesis of Alzheimer's disease (AD). Reduced BER efficiency may result from polymorphisms of BER-related genes. In the present study, we examine whether single nucleotide polymorphisms (SNPs) of BER genes are associated with increased risk of AD. Methods: SNP genotyping was carried out on DNA isolated from peripheral blood mononuclear cells obtained from 120 patients with AD and 110 healthy volunteers. Samples were genotyped for the presence of BER-related SNPs, i.e.XRCC1-rs1799782, rs25487; MUTYH-rs3219489, and PARP1-rs1136410. Results: We found a positive association between AD risk and the presence of G/A genotype variant of the XRCC1 rs25487 polymorphism [odds ratio (OR) = 3.762,95% Cl: 1.793-7.8911. The presence of the A/A genotype of this polymorphism reduced the risk of AD (OR = 0.485,95% Cl: 0.271-0.870). In cases of the PARP1 gene rs1136410 polymorphism, we observed that the T/C variant increases (OR =4.159, 95% Cl: 1.978-8.745) while the T/T variant reduces risk (OR = 0.240,95% Cl: 0.114-0.556) of AD. Conclusions: We conclude that BER gene polymorphisms may play an important role in the etiology of AD. Diagnosing the presence or absence of particular genetic variants may be an important marker of AD. Further research on a larger population is needed. There is also a need to examine polymorphisms of other BER in the context of AD risk. Słowa kluczowe: Alzheimer's disease, Base excision repair, Polymorphisms Afiliacje autorów:
| 25p. | |||||||||||||||||||||||||||||||||||||||||||
9. | Czarny P.♦, Kwiatkowski D.♦, Kacperska D.♦, Kawczyńska D.♦, Talarowska M.♦, Orzechowska A.♦, Bielecka-Kowalska A.♦, Szemraj J.♦, Gałecki P.♦, Śliwiński T.♦, Elevated Level of DNA Damage and Impaired Repair of Oxidative DNA Damage in Patients with Recurrent Depressive Disorder, Medical Science Monitor, ISSN: 1643-3750, DOI: 10.12659/MSM.892317, Vol.21, pp.412-418, 2015 Streszczenie: Background: Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. Słowa kluczowe: Depression, DNA Damage, DNA Repair, Oxidative Stress, Reactive Oxygen Species Afiliacje autorów:
| 15p. | |||||||||||||||||||||||||||||||||||||||||||
10. | Śliwińska A.♦, Kwiatkowski D.♦, Czarny P.♦, Milczarek J.♦, Toma M.♦, Korycinska A.♦, Szemraj J.♦, Śliwiński T.♦, Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles, TOXICOLOGY MECHANISMS AND METHODS, ISSN: 1537-6516, DOI: 10.3109/15376516.2015.1006509, Vol.25, No.3, pp.176-183, 2015 Streszczenie: Objectives: Metal oxide nanoparticles (ZnO-NPs and Al2O3-NPs) are used in many fields, including consumer products and biomedical applications. As a result, exposure to these NPs is highly frequent, however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms are available. For this reason, we studied cytotoxic and genotoxic effects of ZnO-NPs and Al2O3-NPs on human peripheral blood lymphocytes. Słowa kluczowe: DNA repair, oxidative DNA damage, single and double strand breaks Afiliacje autorów:
| 15p. |