mgr inż. Justyna Maj |
Doktorat
2021-09-30 | Wpływ mikrostruktury na właściwości mechaniczne, termiczne i tribologiczne infiltrowanych kompozytów gradientowych Al2O3/AlSi12
| 1374 |
Ostatnie publikacje
1. | Maj J., Węglewski W., Bochenek K., Rogal Ł.♦, Woźniacka S., Basista M., A comparative study of mechanical properties, thermal conductivity, residual stresses, and wear resistance of aluminum-alumina composites obtained by squeeze casting and powder metallurgy, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-021-06401-7, pp.1-10, 2021 Streszczenie: Squeeze casting and powder metallurgy techniques were employed to fabricate AlSi12/Al2O3 composites, which are lightweight structural materials with potential applications in the automotive industry. The impact of the processing route on the material properties was studied. Comparative analyses were conducted for the Vickers hardness, flexural strength, fracture toughness, thermal conductivity, thermal residual stresses, and frictional wear. Our results show that the squeeze cast composite exhibits superior properties to those obtained using powder metallurgy. Afiliacje autorów:
| 200p. | ||||||||||||||||||||||||||||
2. | Bazarnik P.♦, Nosewicz S., Romelczyk-Baishya B.♦, Chmielewski M.♦, Strojny-Nędza A.♦, Maj J., Huang Y.♦, Lewandowska M.♦, Langdon T.G.♦, Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2019.138350, Vol.766, pp.138350-1-11, 2019 Streszczenie: This investigation examines the problem of homogenization in metal matrix composites (MMCs) and the methods of increasing their strength using severe plastic deformation (SPD). In this research MMCs of pure copper and silicon carbide were synthesized by spark plasma sintering (SPS) and then further processed via high-pressure torsion (HPT). The microstructures in the sintered and in the deformed materials were investigated using Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). The mechanical properties were evaluated in microhardness tests and in tensile testing. The thermal conductivity of the composites was measured with the use of a laser pulse technique. Microstructural analysis revealed that HPT processing leads to an improved densification of the SPS-produced composites with significant grain refinement in the copper matrix and with fragmentation of the SiC particles and their homogeneous distribution in the copper matrix. The HPT processing of Cu and the Cu–SiC samples enhanced their mechanical properties at the expense of limiting their plasticity. Processing by HPT also had a major influence on the thermal conductivity of materials. It is demonstrated that the deformed samples exhibit higher thermal conductivity than the initial coarse-grained samples. Słowa kluczowe: copper, silicon carbide, high-pressure torsion, spark plasma sintering, thermal conductivity Afiliacje autorów:
| 140p. | ||||||||||||||||||||||||||||
3. | Maj J., Basista M., Węglewski W., Bochenek K., Strojny-Nędza A.♦, Naplocha K.♦, Panzner T.♦, Tatarkova M.♦, Fiori F.♦, Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2017.12.091, Vol.715, pp.154-162, 2018 Streszczenie: Aluminum-alumina composites with interpenetrating network structure are interesting structural materials due to their high resistance to elevated temperature and frictional wear, good heat conductivity, enhanced mechanical strength and fracture toughness. In this paper aluminum-alumina bulk composites and FGMs are manufactured by pressure infiltration of porous alumina preforms with molten aluminium alloy (EN AC-44200). Influence of the interpenetrating microstructure on the macroscopic bending strength, fracture toughness, hardness and heat conduction is examined. Special focus is on processing-induced thermal residual stresses in aluminium-alumina composites due to their potentially detrimental effects on material performance in structural elements under in-service conditions. The residual stresses are measured experimentally in the ceramic phase by neutron diffraction and simulated numerically using a micro-CT based Finite Element model, which takes into account the actual interpenetrating microstructure of the composite. The model predictions for two different volume fractions of alumina agree fairly well with the neutron diffraction measurements Słowa kluczowe: A. stress measurements, X-ray analysis, finite element analysis, B. composites, C. casting methods Afiliacje autorów:
| 35p. | ||||||||||||||||||||||||||||
4. | Basista M., Jakubowska J., Węglewski W., Processing Induced Flaws in Aluminum–Alumina Interpenetrating Phase Composites, Advanced Engineering Materials, ISSN: 1438-1656, DOI: 10.1002/adem.201700484, Vol.19, No.12, pp.1700484-1-14, 2017 Streszczenie: This review paper deals with flaws in aluminum–alumina composites and FGMs induced by their manufacturing processes. Aluminum–alumina composites have been studied for many years as potentially interesting materials for applications, for example, in the automotive sector due to their enhanced mechanical strength, wear resistance, good heat conductivity and low specific weight. The focus here is on the interpenetrating phase composites (IPCs) manufactured by infiltration of porous alumina preforms with molten aluminum alloys. The primary objective is to provide an updated overview of research findings on a variety of flaws occurring at different stages of the manufacturing processes. Some precautions on how to avoid processing induced flaws in aluminum–alumina bulk composites and FGMs are mentioned. Afiliacje autorów:
| 30p. |
Abstrakty konferencyjne
1. | Jakubowska J., Węglewski W., Bochenek K., Kasiarova M.♦, Dusza J.♦, Basista M., Effect of microstructure and thermal residual stresses on fracture behaviour of metal-ceramic composites, AMT 2016, XXI Physical Metallurgy and Materials Science Conference - Advanced Materials and Technologies, 2016-06-05/06-08, Rawa Mazowiecka (PL), No.E07, pp.1, 2016 Streszczenie: In this paper the influence of material microstructure and thermal residual stresses on the macroscopic fracture toughness, Young’s modulus and bending strength of metal-ceramic composites is studied. Słowa kluczowe: thermal residual stresses, mechanical properties, powder metallurgy, interpenetrating phase composites Afiliacje autorów:
|