
Partner: dr hab. inż. Urszula Stachewicz |
|
Promotor prac doktorskich
1. | 2022-10-24 | Krysiak Zuzanna (Akademia Górniczo-Hutnicza w Krakowie) | Designing and characterization of electrospun patches for atopic skin |
Ostatnie publikacje
1. | Zaszczyńska A., Gradys A. D., Kołbuk-Konieczny D., Zabielski K., Szewczyk P.♦, Stachewicz U.♦, Sajkiewicz P. Ł., Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering, Micron, ISSN: 0968-4328, DOI: 10.1016/j.micron.2024.103743, Vol.188, pp.103743-1-15, 2025![]() Streszczenie: The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation. Słowa kluczowe: Scaffolds, Tissue engineering, Bone tissue engineering, Smart medicine, Biodegradable polymers, Regenerative medicine Afiliacje autorów:
| ![]() | 100p. | |||||||||||||||||||||||||||||||||||||||||
2. | Zaszczyńska A., Gradys A.D., Ziemiecka A.♦, Szewczyk P.♦, Tymkiewicz R., Lewandowska-Szumieł M.♦, Stachewicz U.♦, Sajkiewicz P.Ł., Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms25094980, Vol.25, No.9, pp.4980-1-25, 2024![]() Streszczenie: Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers’ diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation. Słowa kluczowe: scaffolds,polymers,piezoelectricity,bone tissue engineering,nanofibers,regenerative medicine Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
3. | Szewczyk P.♦, Kopacz M.♦, Krysiak Z.♦, Stachewicz U.♦, Oil-Infused Polymer Fiber Membranes as Porous Patches for Long-Term Skin Hydration and Moisturization, Macromolecular Materials and Engineering, ISSN: 1438-7492, DOI: 10.1002/mame.202300291, Vol.309, No.2, pp.2300291-1-8, 2024![]() Streszczenie: Skin allergies and diseases, including atopic dermatitis (AD), affect millions worldwide. Current treatments for AD are often expensive, leading to a need for cost-effective solutions. Here, using fiber-based patches to maintain and increase skin hydration is explored, which helps treat eczema and AD. Nanofiber membranes are manufactured via electrospinning of eight different polymers: nylon 6 (PA6), polyimide (PI), poly(3-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV), poly(l-lactide) (PLLA), polycaprolactone (PCL), and polystyrene (PS), and two molecular weights poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB). Further, their morphology is examined through scanning electron microscopy (SEM), fibers, and pores diameter, wettability, and membrane thickness. Additionally, water vapor transmission rates (WVTR) are measured, and notably, skin hydration tests are conducted before and after using evening primrose oil-infused patches. The comparison and findings highlight the flexibility of electrospun patches, demonstrating their potential in maintaining skin hydration for 6 h and enhancing skin moisture, which are necessary in AD treatment. These insights, which focus on selecting the most effective performance patches, help improve skin moisture, leading to tailored treatments for AD, which can significantly impact the efforts to reduce healthcare costs and simplify skincare steps. Afiliacje autorów:
| ![]() | 70p. | |||||||||||||||||||||||||||||||||||||||||
4. | Krysiak Z.♦, Stachewicz U.♦, Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment, WIREs Nanomedicine and Nanobiotechnology, ISSN: 1939-0041, DOI: 10.1002/wnan.1829, Vol.15, No.1, pp.e1829-1-35, 2023![]() Streszczenie: The skin is a complex layer system and the most important barrier between the environment and the organism. In this review, we describe some widespread skin problems, with a focus on eczema, which are affecting more and more people all over the world. Most of treatment methods for atopic dermatitis (AD) are focused on increasing skin moisture and protecting from bacterial infection and external irritation. Topical and transdermal treatments have specific requirements for drug delivery. Breathability, flexibility, good mechanical properties, biocompatibility, and efficacy are important for the patches used for skin. Up to today, electrospun fibers are mostly used for wound dressing. Their properties, however, meet the requirements for skin patches for the treatment of AD. Active agents can be incorporated into fibers by blending, coaxial or side-by-side electrospinning, and also by physical absorption post-processing. Drug release from the electrospun membranes is affected by drug and polymer properties and the technique used to combine them into the patch. We describe in detail the in vitro release mechanisms, parameters affecting the drug transport, and their kinetics, including theoretical approaches. In addition, we present the current research on skin patch design. This review summarizes the current extensive know-how on electrospun fibers as skin drug delivery systems, while underlining the advantages in their prospective use as patches for atopic dermatitis. Słowa kluczowe: atopic dermatitis, drug delivery, electrospinning, electrospun fibers, release, skin patches Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
5. | Krysiak Z.♦, Abdolmaleki H.♦, Agarwala S.♦, Stachewicz U.♦, Inkjet Printing of Electrodes on Electrospun Micro- and Nanofiber Hydrophobic Membranes for Flexible and Smart Textile Applications, Polymers, ISSN: 2073-4360, DOI: 10.3390/polym14225043, Vol.14, No.22, pp.5043-1-14, 2022![]() Streszczenie: With the increasing demand for smart textile and sensor applications, the interest in printed electronics is rising. In this study, we explore the applicability of electrospun membranes, characterized by high porosity and hydrophobicity, as potential substrates for printed electronics. The two most common inks, silver and carbon, were used in inkjet printing to create a conductive paths on electrospun membranes. As substrates, we selected hydrophobic polymers, such as polyimide (PI), low- and high-molecular-weight poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) and polystyrene (PS). Electrospinning of PI and PVB resulted in nanofibers in the range of 300–500 nm and PVB and PS microfibers (1–5 μm). The printed patterns were investigated with a scanning electron microscope (SEM) and resistance measurements. To verify the biocompatibility of printed electrodes on the membranes, an indirect cytotoxicity test with cells (MG-63) was performed. In this research, we demonstrated good printability of silver and carbon inks on flexible PI, PVB and PS electrospun membranes, leading to electrodes with excellent conductivity. The cytotoxicity study indicated the possibility of using manufactured printed electronics for various sensors and also as topical wearable devices. Słowa kluczowe: printed electronics,inkjet printing,electrospinning,fibers,hydrophobicity,cells,membrane Afiliacje autorów:
| ![]() | 100p. | |||||||||||||||||||||||||||||||||||||||||
6. | Krysiak Z.♦, Stachewicz U.♦, Urea-Based Patches with Controlled Release for Potential Atopic Dermatitis Treatment, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics14071494, Vol.14, No.7, pp.1494-1-10, 2022![]() Streszczenie: Skin diseases such as atopic dermatitis (AD) are widespread and affect people all over the world. Current treatments for dry and itchy skin are mostly focused on pharmaceutical solutions, while supportive therapies such as ointments bring immediate relief. Electrospun membranes are commonly used as a drug delivery system, as they have a high surface to volume area, resulting in high loading capacity. Within this study we present the manufacturing strategies of skin patches using polymer membranes with active substances for treating various skin problems. Here, we manufactured the skin patches using electrospun poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) fibers blended and electrosprayed with urea. The highest cumulative release of urea was obtained from the PVB patches manufactured via blend electrospinning with 5% of the urea incorporated in the fiber. The maximum concentration of released urea was acquired after 30 min, which was followed up by 6 h of constant release level. The simultaneous electrospinning and electrospraying limited the urea deposition and resulted in the lowest urea incorporation followed by the low release level. The urea-based patches, manufactured via blend electrospinning, exhibited a great potential as overnight treatment for various skin problems and their development can bring new trends to the textile-based therapies for AD. Słowa kluczowe: PVB, electrospinning, electrospray, fibers, urea Afiliacje autorów:
| ![]() | 100p. | |||||||||||||||||||||||||||||||||||||||||
7. | Krysiak Z.♦, Szewczyk P.♦, Berniak K.♦, Sroczyk E.♦, Boratyn E.♦, Stachewicz U.♦, Stretchable skin hydrating PVB patches with controlled pores' size and shape for deliberate evening primrose oil spreading, transport and release, , DOI: 10.1016/j.bioadv.2022.212786, Vol.136, pp.212786-1-14, 2022![]() Streszczenie: With the increasing number of skin problems such as atopic dermatitis and the number of affected people, scientists are looking for alternative treatments to standard ointment or cream applications. Electrospun membranes are known for their high porosity and surface to volume area, which leads to a great loading capacity and their applications as skin patches. Polymer fibers are widely used for biomedical applications such as drug delivery systems or regenerative medicine. Importantly, fibrous meshes are used as oil reservoirs due to their excellent absorption properties. In our study, nano- and microfibers of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) were electrospun. The biocompatibility of PVB fibers was confirmed with the keratinocytes culture studies, including cells' proliferation and replication tests. To verify the usability and stretchability of electrospun membranes, they were tested in two forms as-spun and elongated after uniaxially stretched. We examine oil transport through the patches for as-spun fibers and compare it with the numerical simulation of oil flow in the 3D reconstruction of nano- and microfiber networks. Evening primrose oil spreading and water vapor transmission rate (WVTR) tests were performed too. Finally, for skin hydration tests, manufactured materials loaded with evening primrose oil were applied to the forearm of volunteers for 6 h, showing increased skin moisture after using patches. This study clearly demonstrates that pore size and shape, together with fiber diameter, influence oil transport in the electrospun patches allowing to understand the key driving process of electrospun PVB patches for skin hydration applications. The oil release improves skin moisture and can be designed regarding the needs, by manufacturing different fibers' sizes and arrangements. The fibrous based patches loaded with oils are easy to handle and could remain on the altered skin for a long time and deliver the oil, therefore they are an ideal material for overnight bandages for skin treatment. Słowa kluczowe: Controlled oil spreading, Electrospun fibers, fiber elongation, Atopic skin, Keratinocytes, Oil flow numerical modeling Afiliacje autorów:
| ![]() | ||||||||||||||||||||||||||||||||||||||||||
8. | Kaniuk Ł.♦, Ferraris S.♦, Spriano S.♦, Luxbacher T.♦, Krysiak Z.♦, Berniak K.♦, Zaszczyńska A., Marzec M.M.♦, Bernasik A.♦, Sajkiewicz P., Stachewicz U.♦, Time-dependent effects on physicochemical and surface properties of PHBV fibers and films in relation to their interactions with fibroblasts, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2021.148983, Vol.545, pp.148983-1-13, 2021![]() Streszczenie: Biodegradability or materials physicochemical stability are the key biomaterials selection parameters for various medical and tissue engineering applications. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a natural copolymer known from its biocompatibility with great support for cells growth and attachment on films and fibers. In our studies, the physicochemical properties of electrospun PHBV fibers and spin-coated films aged for 1, 4 and 8 weeks were analyzed using bulk (FTIR) and surface chemistry (XPS) methods and water contact angle. Further, we characterized the zeta potential changes after aging, by means of electrokinetic measurements, and cell responses to it, using NIH 3T3 murine fibroblasts. Colorimetric MTS cell viability test allowed the assessment of cell proliferation. Additionally, the morphology of fibroblasts and biointerfaces were studied by confocal laser and electron scanning microscopy (CLSM and SEM). These studies indicated that the activity, attachment and proliferation of fibroblasts is independent of aging of PHBV fibers and films. PHBV films show very stable zeta potential over 8 weeks of aging, opposite to PHBV fibers. Importantly, the flat film of PHBV increases cell proliferation, while the fibrous meshes are an excellent support for their stretching. The results of the study revealed clear advantages of PHBV films and fibrous meshes in cell-material interaction. Słowa kluczowe: cell morphology, fibroblast, electrospun fibers, PHBV, Zeta potential Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
9. | Krysiak Z.♦, Knapczyk-Korczak J.♦, Gabriela M.♦, Stachewicz U.♦, Moisturizing effect of skin patches with hydrophobic and hydrophilic electrospun fibers for atopic dermatitis, COLLOIDS AND SURFACES B-BIOINTERFACES, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2020.111554, Vol.199, pp.111554-1-8, 2021![]() Streszczenie: Atopic dermatitis (eczema), one of the most common disease and also most difficult to treat, is seeking for novel development not only in medicine but also in bioengineering. Moisturization is the key in eczema treatment as dry skin triggers inflammation that damages the skin barrier. Thus, here we combine electrospun hydrophobic polystyrene (PS) and hydrophilic nylon 6 (PA6) with oils to create patches helping to moisturize atopic skin. The fibrous membranes manufactured using electrospinning: PS, PA6, composite PS – PA6 and sandwich system combining them were characterized by water vapor transmission rates (WVTR) and fluid uptake ability (FUA). To create the most effective moisturizing patches we use borage, black cumin seed and evening primrose oil and tested their spreading. We show a great potential of our designed patches, the oil release tests on a skin and their moisturizing effect were verified. Our results distinctly reveal that both fiber sizes and hydrophilicity/hydrophobicity of polymer influence oil spreading, release from membranes and WVTR measurements. Importantly, the direct skin test indicates the evident increase of hydration for both dry and normal skin after using the patches. The electrospun patches based on the hydrophobic and hydrophilic polymers have outstanding properties to be used as oil carriers for atopic dermatitis treatment. Słowa kluczowe: PS – PA6 composite, Electrospinning, Skin patches, Oil carriers, Atopic skin, Controlled oil release Afiliacje autorów:
| ![]() | 100p. | |||||||||||||||||||||||||||||||||||||||||
10. | Sara M.♦, Ura D.♦, Krysiak Z., Kaniuk Ł.♦, Szewczyk P.♦, Stachewicz U.♦, Electrospun PCL Patches with Controlled Fiber Morphology and Mechanical Performance for Skin Moisturization via Long-Term Release of Hemp Oil for Atopic Dermatitis, Membranes, ISSN: 2077-0375, DOI: 10.3390/membranes11010026, Vol.11, No.1, pp.26-1-13, 2021![]() Streszczenie: Atopic dermatitis (AD) is a chronic, inflammatory skin condition, caused by wide genetic, environmental, or immunologic factors. AD is very common in children but can occur at any age. The lack of long-term treatments forces the development of new strategies for skin regeneration. Polycaprolactone (PCL) is a well-developed, tissue-compatible biomaterial showing also good mechanical properties. In our study, we designed the electrospun PCL patches with controlled architecture and topography for long-term release in time. Hemp oil shows anti-inflammatory and antibacterial properties, increasing also the skin moisture without clogging the pores. It can be used as an alternative cure for patients that do not respond to traditional treatments. In the study, we tested the mechanical properties of PCL fibers, and the hemp oil spreading together with the release in time measured on skin model and human skin. The PCL membranes are suitable material as patches or bandages, characterized by good mechanical properties and high permeability. Importantly, PCL patches showed release of hemp oil up to 55% within 6 h, increasing also the skin moisture up to 25%. Our results confirmed that electrospun PCL patches are great material as oil carriers indicating a high potential to be used as skin patches for AD skin treatment. Słowa kluczowe: PCL, electrospinning, fibers, tensile strength, hemp oil, skin patches, release, skin moisture, atopic dermatitis Afiliacje autorów:
| ![]() | ||||||||||||||||||||||||||||||||||||||||||
11. | Szewczyk P.K.♦, Gradys A., Kyun Kim S.♦, Persano L.♦, Marzec M.♦, Kryshtal A.♦, Busolo T.♦, Toncelli A.♦, Pisignano D.♦, Bernasik A.♦, Kar-Narayan S.♦, Sajkiewicz P., Stachewicz U.♦, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c02578, Vol.12, No.11, pp.13575-13583, 2020![]() Streszczenie: Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm^–2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications. Słowa kluczowe: PVDF, polymer crystallinity, electrospinning, piezoelectricity, voltage polarity Afiliacje autorów:
| ![]() | 200p. | |||||||||||||||||||||||||||||||||||||||||
12. | Ura D.P.♦, Rosell-Llompart J.♦, Zaszczyńska A., Vasilyev G.♦, Gradys A., Szewczyk P.K.♦, Knapczyk-Korczak J.♦, Avrahami R.♦, Šišková A.O.♦, Arinstein A.♦, Sajkiewicz P., Zussman E.♦, Stachewicz U.♦, The role of electrical polarity in electrospinning and on the mechanical and structural properties of as-spun fibers, Materials, ISSN: 1996-1944, DOI: 10.3390/ma13184169, Vol.13, No.18, pp.4169-1-18, 2020![]() Streszczenie: Electric field strength and polarity in electrospinning processes and their effect on process dynamics and the physical properties of as-spun fibers is studied. Using a solution of the neutral polymer such as poly(methyl methacrylate) (PMMA) we explored the electrospun jet motion issued from a Taylor cone. We focused on the straight jet section up to the incipient stage of the bending instability and on the radius of the disk of the fibers deposited on the collecting electrode. A new correlation formula using dimensionless parameters was found, characterizing the effect of the electric field on the length of the straight jet, L˜E~E˜0.55. This correlation was found to be valid when the spinneret was either negatively or positively charged and the electrode grounded. The fiber deposition radius was found to be independent of the electric field strength and polarity. When the spinneret was negatively charged, L˜E was longer, the as-spun fibers were wider. The positively charged setup resulted in fibers with enhanced mechanical properties and higher crystallinity. This work demonstrates that often-overlooked electrical polarity and field strength parameters influence the dynamics of fiber electrospinning, which is crucial for designing polymer fiber properties and optimizing their collection. Słowa kluczowe: fibers, electrical polarity, charges, electrospinning, PMMA, mechanical properties Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
13. | Krysiak Z.♦, Gawlik M.♦, Knapczyk-Korczak J.♦, Kaniuk Ł.♦, Stachewicz U.♦, Hierarchical Composite Meshes of Electrospun PS Microfibers with PA6 Nanofibers for Regenerative Medicine, Materials, ISSN: 1996-1944, DOI: 10.3390/ma13081974, Vol.13, No.8, pp.1974-1-11, 2020![]() Streszczenie: One of the most frequently applied polymers in regenerative medicine is polystyrene (PS), which is commonly used as a flat surface and requires surface modifications for cell culture study. Here, hierarchical composite meshes were fabricated via electrospinning PS with nylon 6 (PA6) to obtain enhanced cell proliferation, development, and integration with nondegradable polymer fibers. The biomimetic approach of designed meshes was verified with a scanning electron microscope (SEM) and MTS assay up to 7 days of cell culture. In particular, adding PA6 nanofibers changes the fibroblast attachment to meshes and their development, which can be observed by cell flattening, filopodia formation, and spreading. The proposed single-step manufacturing of meshes controlled the surface properties and roughness of produced composites, allowing governing cell behavior. Within this study, we show the alternative engineering of nondegradable meshes without post-treatment steps, which can be used in various applications in regenerative medicine. Słowa kluczowe: polystyrene, nylon 6, electrospun fibers, composite mesh, proliferation, roughness Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
14. | Kaniuk Ł.♦, Krysiak Z.♦, Sara M.♦, Stachewicz U.♦, Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds, Materials Science and Engineering C, ISSN: 0928-4931, DOI: 10.1016/j.msec.2020.110668, Vol.110, pp.110668-1-8, 2020![]() Streszczenie: The cellular response is the most crucial in vitro research. Materials' biocompatibility is determined based on cell proliferation and growth. Moreover, the topography of the scaffold surface is the key to enhance cell attachment and anchoring that importantly control further tissue development. Individual cell types have specific preferences regarding the type of surface and its geometry. In our research, we used poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) PHBV to produce two types of substrate: a 3D structure of electrospun fibers and 2D flat films. The PHBV products were morphologically characterized by scanning electron microscopy (SEM). The cytocompatibility was evaluated with cell viability and proliferation using two different types of cells: human osteoblast-like cells (MG-63) and NIH 3 T3 murine fibroblast cells. The behaviour of both cell types was compared on the similar PHBV fiber scaffolds and films using two types of polystyrene (PS) based substrate for the cell culture study: unmodified PS that is not favourable for the attachment of cells and on tissue culture polystyrene (TCPS) plates, which are chemically modify to enhance cells attachment. The results clearly showed high biocompatibility of PHBV as both types of cells showed similar proliferation. These results indicated that PHBV scaffolds are suitable for the development of multifunctional substrates facilitating the growth of different types of tissue regardless of the 3D and 2D designed structures for regeneration purposes. Słowa kluczowe: PHBV, Fiber, Thin film, Osteoblast, Fibroblast, Cell, attachment Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||||||||||||||||
15. | Sara M.♦, Sara F.♦, Silvia S.♦, Krysiak Z.♦, Kaniuk Ł.♦, Marzec M.♦, Sung Kyun K.♦, Szewczyk P.♦, Gruszczyński A.♦, Wytrwal-Sarna M.♦, Karbowniczek J.♦, Bernasik A.♦, Sohini K.♦, Stachewicz U.♦, Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration, MATERIALS AND DESIGN, ISSN: 0264-1275, DOI: 10.1016/j.matdes.2020.108915, Vol.194, pp.108915-1-11, 2020![]() Streszczenie: Surface potential of biomaterials is a key factor regulating cell responses, driving their adhesion and signaling in tissue regeneration. In this study we compared the surface and zeta potential of smooth and porous electrospun polycaprolactone (PCL) fibers, as well as PCL films, to evaluate their significance in bone regeneration. The ’ surface potential of the fibers was controlled by applying positive and negative voltage polarities during the electrospinning. The surface properties of the different PCL fibers and films were measured using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), and the zeta potential was measured using the electrokinetic technique. The effect of surface potential on the morphology of bone cells was examined using advanced microcopy, including 3D reconstruction based on a scanning electron microscope with a focused ion beam (FIB-SEM). Initial cell adhesion and collagen formation were studied using fluorescence microscopy and Sirius Red assay respectively, while calcium mineralization was confirmed with energy-dispersive x-ray (EDX) and Alzarin Red staining. These studies revealed that cell adhesion is driven by both the surface potential and morphology of PCL fibers. Furthermore, the ability to tune the surface potential of electrospun PCL scaffolds provides an essential electrostatic handle to enhance cell-material interaction and cellular activity, leading to controllable morphological changes. Słowa kluczowe: Surface potential, Kelvin probe force microscopy, Zeta potential, Cells, Adhesion, Mineralization Afiliacje autorów:
| ![]() | ||||||||||||||||||||||||||||||||||||||||||
16. | Krysiak Z.♦, Kaniuk Ł.♦, Sara M.♦, Szewczyk P.♦, Sroczyk E.♦, Petra P.♦, Lisiecka-Graca P.♦, Bailey R.♦, Emiliano B.♦, Stachewicz U.♦, Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment, ACS Applied Bio Materials, ISSN: 2576-6422, DOI: 10.1021/acsabm.0c00854, Vol.3, No.11, pp.7666-7676, 2020![]() Streszczenie: Atopic dermatitis (eczema) is a widespread disorder, with researchers constantly looking for more efficacious treatments. Natural oils are reported to be an effective therapy for dry skin, and medical textiles can be used as an alternative or supporting therapy. In this study, fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) with low and high molecular weights were manufactured to obtain nano- and micrometer fibers via electrospinning for the designed patches used as oil carriers for atopic skin treatment. The biocompatibility of PVB patches was analyzed using proliferation tests and scanning electron microscopy (SEM), which combined with a focused ion beam (FIB) allowed for the 3D visualization of patches. The oil spreading tests with evening primrose, black cumin seed, and borage were verified with cryo-SEM, which showed the advantage nanofibers have over microfibers as carriers for low-viscosity oils. The skin tests expressed the usability and the enhanced oil delivery performance for electrospun patches. We demonstrate that through the material nano- and microstructure, commercially available polymers such as PVB have great potential to be deployed as a biomaterial in medical applications, such as topical treatments for chronic skin conditions. Słowa kluczowe: PVB, electrospun fibers, biocompatibility, oil carriers, atopic skin patches Afiliacje autorów:
| ![]() | ||||||||||||||||||||||||||||||||||||||||||
17. | Szewczyk P.♦, Sara M.♦, Krysiak Z.♦, Kaniuk Ł.♦, Karbowniczek J.♦, Stachewicz U.♦, Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration, Biomedical Materials, ISSN: 1748-6041, DOI: 10.1088/1748-605X/ab3c20, Vol.14, No.6, pp.065006-1-8, 2019![]() Streszczenie: Bone tissue engineering can be utilized to study the early events of osteoconduction. Fundamental research in cell adhesion to various geometries and proliferation has shown the potential of extending it to implantable devices for regenerative medicine. Following this concept in our studies, first, we developed well-controlled processing of polyvinylidene fluoride (PVDF) film to obtain a surface biomimicking ECM. We optimized the manufacturing dependent on humidity and temperature during spin-coating of a polymer solution. The mixture of solvents such as dimethylacetamide and acetone together with high humidity conditions led to a biomimetic, highly porous and rough surface, while with lower humidity and high temperatures drying allowed us to obtain a smooth and flat PVDF film. The roughness of the PVDF film was biofabricated and compared to smooth films in cell culture studies for adhesion and proliferation of osteoblasts. The bioinspired roughness of our films enhanced the osteoblast adhesion by over 44%, and there was collagen formation already after 7 days of cell culturing that was proved via scanning electron microscopy observation, light microscopy imaging after Sirius Red staining, and proliferation test such as MTS. Cell development, via extended filopodia, formed profoundly on the rough PVDF surface, demonstrated the potential of the structural design of biomimetic surfaces to enhance further bone tissue regeneration. Słowa kluczowe: PVDF, film, roughness, cell, adhesion, collagen Afiliacje autorów:
| ![]() | 70p. |
Abstrakty konferencyjne
1. | Ura D.P.♦, Gradys A., Zaszczyńska A., Sajkiewicz P., Stachewicz U.♦, Controlling of mechanical properties of electrospun PMMA fibers via voltage polarity, 7th Dresden Nanoanalysis Symposium: Nano-scale characterization for cutting-edge materials research and sustainable materials development, 2019-08-30/08-30, Dresden (DE), pp.1-2, 2019 | ![]() |
2. | Ura D.P.♦, Gradys A., Zaszczyńska A., Sajkiewicz P., Stachewicz U.♦, Controlling of mechanical properties of electrospun PMMA fibers via voltage polarity, 8th International PhD Meeting, 2019-08-28/08-29, Dresden (DE), pp.1, 2019 | ![]() |
3. | Ura P.D.♦, Zaszczyńska A., Gradys A., Sajkiewicz P., Stachewicz U.♦, Mechanical properties of electrospun non-woven PMMA mats produced with positive and negative voltage polarities, AMT 2019, XXII Physical Metallurgy and Materials Science Conference: Advanced Materials and Technologies, 2019-06-09/06-12, Bukowina Tatrzańska (PL), pp.1, 2019 | ![]() |
4. | Ura D.P.♦, Gradys A., Zaszczyńska A., Sajkiewicz P., Stachewicz U.♦, Effect of voltage polarity on mechanical properties of electrospun PMMA fibers, Frontiers in Polymer Science, 2019-05-05/05-08, Budapest (HU), pp.1-2, 2019 | ![]() |