Partner: Roman Minikayev


Ostatnie publikacje
1.Wilczewski S., Nowak Z. M., Maj M., Osial M., Minikayev R., Giersig M., Enhancing Epoxy Composites with Graphene and Graphene Oxide: Thermal and Mechanical Insights, ChemNanoMat, ISSN: 2199-692X, DOI: 10.1002/cnma.202400488, pp.1-15, 2024

Streszczenie:

This paper shows the graphene and graphene oxide nanoflakes as the 0.1, 0.5, 1, 2, and 4 wt.% reinforcement of epoxy-resin matrix to enhance the thermal and mechanical characteristics of the composite. Experimental measurement of the glass transition temperature and thermal expansion coefficient indicated that the addition of nanostructural filler improving the glass transition temperature about ~12 oC for nanocomposite filled carbon-based nanoparticles for both heating and cooling cycles compared to the bare epoxy resin. Young's modulus measured by nanoindentation and the stress versus strain curves for different weight fractions of graphene nanoflakes additives during uniaxial compression and tension considered were obtained from the experiments. The distributions of strain field for the transverse, axial and shear components on the nanocomposites, during the uniaxial tension process for quasi-static strain rates, were analyzed. The tensile strengths show improvement for nanocomposites with less than 1 % weight fraction of carbon-based nanoparticles. The compressive yield stress increased to a maximal value (at the recorded peak on the curve) for an epoxy nanocomposite having 2 wt.% oxidized graphene flakes, where both parameters were enhanced with the oxidized form of graphene for the more effective dispersion in the epoxy resin matrix over the bare graphene filler.

Słowa kluczowe:

epoxy resin, nanocomposite, carbon nanoparticles, tensile strength, compression strength, thermal stability

Afiliacje autorów:

Wilczewski S.-other affiliation
Nowak Z. M.-IPPT PAN
Maj M.-IPPT PAN
Osial M.-IPPT PAN
Minikayev R.-other affiliation
Giersig M.-IPPT PAN
100p.