Partner: Magdalena Łazińska |
|
Ostatnie publikacje
1. | Dubey Ved P., Kopeć M., Łazińska M.♦, Kowalewski Z.L., Yield surface identification of CP-Ti and its evolution reflecting pre-deformation under complex loading, International Journal of Plasticity, ISSN: 0749-6419, DOI: 10.1016/j.ijplas.2023.103677, Vol.167, pp.1-21, 2023 Streszczenie: Uniaxial testing methods to characterize materials provide only limited data that is insufficient to fully understand all aspects of their behaviour, such as initial texture or anisotropy. Therefore, this research aims to conduct complex stress loading experiments to understand the physical mechanism accountable for plastic deformation caused by monotonic tension and tension assisted by proportional cyclic torsion in the CP-Ti (Commercially Pure Titanium). The yield surface approach was applied to assess the variation of mechanical properties in the as-received and predeformed material. It was found, that such monotonic tension associated with cyclic torsion caused a significant decrease of the tensile stress. The initial yield surface obtained for the asreceived material exhibits anisotropic behaviour, whereas, the sizes of subsequent yield surface reflecting pre-deformation were reduced in all directions with exception of the tension direction. Słowa kluczowe: yield surface,pre-deformation,plastic anisotropy,cycle loading,tubular specimen Afiliacje autorów:
| 200p. | |||||||||||||||||||
2. | Barwińska I., Kopeć M., Kukla D., Łazińska M.♦, Sitek R.♦, Kowalewski Z., Effect of Aluminizing on the Fatigue and High-Temperature Corrosion Resistance of Inconel 740 Nickel Alloy, The Journal of The Minerals, ISSN: 1047-4838, DOI: 10.1007/s11837-022-05662-w, Vol.75, No.2, pp.1-13, 2023 Streszczenie: The fatigue response and high-temperature corrosion resistance of Inconel 740 nickel alloy in its as-received state, and the same material with aluminized surface layer, were investigated. The aluminized layer was applied by using the chemical vapor deposition process with the participation of AlCl3 vapors under a hydrogen protective atmosphere at a temperature of 1040°C for 8 h and internal pressure of 150 hPa. The microstructure of the aluminized layer was characterized through scanning electron microscopy and x-ray energy dispersive spectroscopy analysis. It was found that Inconel 740 with an aluminized surface exhibited an improved hardness and fatigue response of 100 MPa in the whole range of stress amplitudes from 350 MPa to 650 MPa. Additionally, the application of the aluminization process enhanced service life as well as the corrosion resistance of the alloy in question and effectively protected it against high-temperature corrosion. Afiliacje autorów:
| 100p. | |||||||||||||||||||
3. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Three Point Bending of Laser Engineered Net Shaping (LENS) Repaired Inconel 625, Physical Science Forum, ISSN: 2673-9984, DOI: 10.3390/psf2022004001, Vol.4, No.1, pp.1-7, 2022 Streszczenie: In this paper, the LENS technique with optimized parameters was applied to investigate the feasibility of Inconel 625 repair process. The process was performed on the substrate material heated to 300 ◦C at laser power of 550 W. Subsequently, the specimens were subjected to microhardness and three-point bending tests to assess the effectiveness of the repair system. The results showed that the mechanical properties of the Inconel 625 specimens repaired by using the LENS system were similar or even better than those of the substrate material. Słowa kluczowe: LENS technology, Inconel alloys, repair process, additive manufacturing Afiliacje autorów:
| ||||||||||||||||||||
4. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Suitability of laser engineered net shaping technology for Inconel 625 based parts repair process, Materials, ISSN: 1996-1944, DOI: 10.3390/ma14237302, Vol.14, No.23, pp.7302-1-14, 2021 Streszczenie: In this paper, the Inconel 625 laser clads characterized by microstructural homogeneity due to the application of the Laser Engineered Net Shaping (LENS, Optomec, Albuquerque, NM, USA) technology were studied in detail. The optimized LENS process parameters (laser power of 550 W, powder flow rate of 19.9 g/min, and heating of the substrate to 300 °C) enabled to deposit defect-free laser cladding. Additionally, the laser clad was applied in at least three layers on the repairing place. The deposited laser clads were characterized by slightly higher mechanical properties in comparison to the Inconel 625 substrate material. Microscopic observations and X-ray Tomography (XRT, Nikon Corporation, Tokyo, Japan) confirmed, that the substrate and cladding interface zone exhibited a defect-free structure. Mechanical properties and flexural strength of the laser cladding were examined using microhardness and three-point bending tests. It was concluded, that the LENS technology could be successfully applied for the repair since a similar strain distribution was found after Digital Image Correlation measurements during three-point bending tests. Słowa kluczowe: LENS technology, Inconel alloys, repair process, additive manufacturing Afiliacje autorów:
| 140p. |
Abstrakty konferencyjne
1. | Mierzejewska I., Kopeć M., Kukla D., Łazińska M.♦, Sitek R.♦, Kowalewski Z.L., MICROSTRUCTURE EVOLUTION OF THE AS-RECEIVED AND ALUMINIZED INCONEL 740 AFTER EXPOSURE AT 1000°C, DAS 2024, 40th DANUBIA-ADRIA SYMPOSIUM on Advances in Experimental Mechanics, 2024-09-24/09-27, Gdańsk (PL), pp.115-116, 2024 | |||||||||||||||||||
2. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Suitability of Laser Engineered Net Shaping Technology for Inconel 625 Based Parts Repair Process, ESMC 2022, 11th European Solid Mechanics Conference, 2022-07-04/07-08, Galway (IE), pp.1, 2022 Słowa kluczowe: inconel alloys, repair process, additive manufacturing Afiliacje autorów:
| |||||||||||||||||||
3. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Suitability of laser engineered net shaping technology for inconel 625 based parts repair process, EYEC'2022, 10th European Young Engineers Conference, 2022-04-04/04-06, Warszawa (PL), pp.1, 2022 Słowa kluczowe: inconel alloys, repair process, additive manufacturing Afiliacje autorów:
| |||||||||||||||||||
4. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Suitability of laser engineered net shaping technology for inconel 625 based parts repair process, ICEM, 19th International Conference on Experimental Mechanics, 2022-07-17/07-21, Kraków (PL), No.1, pp.176-177, 2022 | |||||||||||||||||||
5. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., Zastosowanie systemu LENS w celu regeneracji elementów wykonanych ze stopu Inconel 625, Inżynieria – Spojrzenie Młodych Naukowców, 2022-04-22/04-24, Katowice - on-line (PL), pp.1-1, 2022 | |||||||||||||||||||
6. | Barwińska I., Kopeć M., Łazińska M.♦, Brodecki A., Durejko T.♦, Kowalewski Z.L., System LENS w regeneracji materiałów inżynierskich wykorzystywanych w lotnictwie, Tytan i jego stopy 2020, 2022-09-18/09-21, Kielce (PL), pp.1-1, 2022 Słowa kluczowe: LENS, wytwarzanie przyrostowe, stopy niklu, stopy tytanu, regeneracja Afiliacje autorów:
|