Partner: dr hab. Jacek Janiszewski

Military University of Technology (PL)

Ostatnie publikacje
1.Kopeć M., Liu X., Gorniewicz D., Modrzejewski P., Zasada D., Jóźwiak S., Janiszewski J., Kowalewski Z.L., Mechanical response of 6061-T6 aluminium alloy subjected to dynamic testing at low temperature: Experiment and modelling, INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, ISSN: 0734-743X, DOI: 10.1016/j.ijimpeng.2023.104843, Vol.185, No.104843, pp.1-10, 2024

Streszczenie:

The aim of this research was to investigate an effect of low temperature on the mechanical properties and mi-crostructure of 6061-T6 aluminium alloy (AA6061-T6) subjected to dynamic loading. The specimens were subjected to dynamic compression at a low temperature of −80°C in a range of strain rates from 1.25 × 10 3 1/s to 3.4 × 10 3 1/s to compare their mechanical responses. The deformation mechanisms were analysed through EBSD observations during which dynamic recovery, was found as the dominant one. Furthermore, microstruc-tural analysis indicated that deformation under high strain rate conditions and temperature of-80°C enables to keep the constant initial grain size of the material after the loading applied. The material behaviour was modelled using mechanism-based viscoplastic constitutive equations. Furthermore, an accuracy of the developed model was validated by comparing it to experimental data. The set of constitutive equations proposed has been successful in modelling the stress-strain behaviour of the material for the range of strain rates and temperatures encountered in aluminium-forming processes under low-temperature conditions.

Słowa kluczowe:

Split Hopkinson pressure bar (SHPB),Low temperature,AA6061-T6,Microstructure

Afiliacje autorów:

Kopeć M.-IPPT PAN
Liu X.-Imperial College London (GB)
Gorniewicz D.-Military University of Technology (PL)
Modrzejewski P.-other affiliation
Zasada D.-other affiliation
Jóźwiak S.-Military University of Technology (PL)
Janiszewski J.-Military University of Technology (PL)
Kowalewski Z.L.-IPPT PAN
140p.
2.Kopeć M., Gorniewicz D., Jóźwiak S., Janiszewski J., Kowalewski Z.L., Microstructural evolution of 6061 aluminium alloy subjected to static and dynamic compression at low temperature, MRS Communications, ISSN: 2159-6867, DOI: 10.1557/s43579-023-00439-x, pp.1-8, 2023

Streszczenie:

In this research, an effect of low temperature on the mechanical properties and microstructure of 6061-T6 aluminium alloy (AA6061-T6) subjected to static and dynamic loading was investigated systematically. The specimens were subjected to compression at the temperature of − 80°C in a range of strain rates from 0.001 to 0.1 1/s under static conditions, and from 1250 to 3400 1/s under dynamic conditions to compare their mechanical responses. The deformation mechanisms were discussed based on EBSD analysis. It was found, that under both testing conditions, dynamic recovery was the dominant mechanism responsible for material deformation.

Afiliacje autorów:

Kopeć M.-IPPT PAN
Gorniewicz D.-Military University of Technology (PL)
Jóźwiak S.-Military University of Technology (PL)
Janiszewski J.-Military University of Technology (PL)
Kowalewski Z.L.-IPPT PAN
100p.
3.Golasiński K.M., Janiszewski J., Sienkiewicz J., Płociński T., Zubko M., Świec P., Pieczyska E.A., Quasi-static and dynamic compressive behavior of Gum Metal: experiment and constitutive model, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, ISSN: 1073-5623, DOI: 10.1007/s11661-021-06409-z, pp.1-14, 2021

Streszczenie:

The quasi-static and high strain rate compressive behavior of Gum Metal with composition Ti-36Nb-2Ta-3Zr-0.3O (wt pct) has been investigated using an electromechanical testing machine and a split Hopkinson pressure bar, respectively. The stress–strain curves obtained for Gum Metal tested under monotonic and dynamic loadings revealed a strain-softening effect which intensified with increasing strain rate. Moreover, the plastic flow stress was observed to increase for both static and dynamic loading conditions with increasing strain rate. The microstructural characterization of the tested Gum Metal specimens showed particular deformation mechanisms regulating the phenomena of strain hardening and strain softening, namely an adiabatic shear band formed at ~ 45 deg with respect to the loading direction as well as widely spaced deformation bands (kink bands). Dislocations within the channels intersecting with twins may cause strain hardening while recrystallized grains and kink bands with crystal rotation inside the grains may lead to strain softening. A constitutive description of the compressive behavior of Gum Metal was proposed using a modified Johnson–Cook model. Good agreement between the experimental and the numerical data obtained in the work was achieved.

Afiliacje autorów:

Golasiński K.M.-IPPT PAN
Janiszewski J.-Military University of Technology (PL)
Sienkiewicz J.-Military University of Technology (PL)
Płociński T.-Politechnika Warszawska (PL)
Zubko M.-other affiliation
Świec P.-other affiliation
Pieczyska E.A.-IPPT PAN
200p.
4.Moćko W., Janiszewski J., Radziejewska J., Grązka M., Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions, INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, ISSN: 0734-743X, DOI: 10.1016/j.ijimpeng.2014.08.015, Vol.75, pp.203-213, 2015

Streszczenie:

Taylor impact tests in the classic and symmetric configurations were applied to analyse the development of plastic deformation and damage in Al-6082-T6 rods. Deformation histories during impact were recorded using high-speed photography, while internal axial damage was identified using metallography. The axial damage observed during the symmetric test were initiated during stress triaxiality peaks under tensile loading conditions. Variations of the stress state are the result of superimposed lateral mechanical waves reflected from the perimeter of the specimen. The fracture strain decreases with the increase of the stress triaxiality; it is thus possible to initiate damage at relatively low strain values under high-stress triaxiality values. During classic Taylor test because of the deflection of the elastic steel anvil in the rod on anvil test, the oscillations are smaller and quickly damped in comparison to the rod on rod experiment. Therefore, the initiation of axial damage is impossible. The cracks on the specimen edge are due to tensile loadings. For both the symmetric and classic Taylor tests, the damage conditions are comparable, i.e., a stable increase of strain combined with tensile loadings.

Słowa kluczowe:

Taylor impact, Numerical modelling, High-speed photography, Damage initiation, Constitutive relation

Afiliacje autorów:

Moćko W.-other affiliation
Janiszewski J.-Military University of Technology (PL)
Radziejewska J.-IPPT PAN
Grązka M.-other affiliation
40p.
5.Moćko W., Janiszewski J., Grązka M., Application of an extended Rusinek-Klepaczko constitutive model to predict the mechanical behavior of 6082-T6 aluminum under Taylor impact test conditions, JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, ISSN: 0309-3247, DOI: 10.1177/0309324713488885, Vol.48, No.6, pp.364-375, 2013

Streszczenie:

The application of an extended Rusinek–Klepaczko constitutive equation to predict the mechanical response of 6082-T6 aluminum under the Taylor impact test conditions was presented in this article. The numerical results obtained in the study were verified through a comparison with the experimental data extracted from the Taylor anvil-on-rod impact experiments. It was concluded that the extended Rusinek–Klepaczko constitutive model predicts the behavior of the tested aluminum alloy under applied loading conditions with satisfactory accuracy. Moreover, it was found that the plastic wave phenomenon in this material is very limited and that there was no region of constant plastic wave velocity. Strain rates up to 1.6 × 104 s−1 were recorded during the Taylor impact experiments; therefore, this value may be set as the upper limit of the extended Rusinek–Klepaczko model for the alloy, which was validated with the anvil-on-rod experiment.

Słowa kluczowe:

Taylor test, split Hopkinson pressure bar, direct impact compression test, 6082-T6 aluminum alloy, plastic wave propagation

Afiliacje autorów:

Moćko W.-other affiliation
Janiszewski J.-Military University of Technology (PL)
Grązka M.-other affiliation
25p.

Abstrakty konferencyjne
1.Kopeć M., Liu A.X., Gorniewicz D., Jóźwiak S., Janiszewski J., Kowalewski Z.L., Mechanical response and microstructural evolution of 6061-T6 aluminium alloy subjected to dynamic testing at low temperature, BSSM, 18th International Conference on Advances in Experimental Mechanics, 2024-09-03/09-05, Liverpool (GB), pp.1-2, 2024

Streszczenie:

The aim of this research was to investigate an effect of low temperature on the mechanical properties and microstructure of 6061-T6 aluminium alloy (AA6061-T6) subjected to dynamic loading. The specimens were subjected to dynamic compression at a low temperature of -80°C in a range of strain rates from 1.25×103 1/s to 3.4 ×103 1/s to compare their mechanical responses. The deformation mechanisms were analysed through EBSD observations during which dynamic recovery, was found as the dominant one. Furthermore, microstructural analysis indicated that deformation under high strain rate conditions and temperature of -80°C enables to keep the constant initial grain size of the material after the loading applied.

Słowa kluczowe:

Split Hopkinson Pressure Bar (SHPB), low temperature, AA6061, microstructure, EBSD

Afiliacje autorów:

Kopeć M.-IPPT PAN
Liu A.X.-other affiliation
Gorniewicz D.-Military University of Technology (PL)
Jóźwiak S.-Military University of Technology (PL)
Janiszewski J.-Military University of Technology (PL)
Kowalewski Z.L.-IPPT PAN
2.Kopeć M., Liu X., Gorniewicz D., Jóźwiak S., Janiszewski J., Kowalewski Z.L., MECHANICAL RESPONSE OF 6061-T6 ALUMINIUM ALLOY SUBJECTED TO DYNAMIC TESTING AT LOW TEMPERATURE, DAS 2024, 40th DANUBIA-ADRIA SYMPOSIUM on Advances in Experimental Mechanics, 2024-09-24/09-27, Gdańsk (PL), pp.81-82, 2024
3.Pieczyska E.A., Staszczak M., Janiszewski J., Sienkiewicz J., Investigation of thermomechanical properties during biaxial loading of βTi alloy named Gum Metal that combines high strength to high elastic properties, 67th Course: Progress in Photoacoustic & Photothermal Phenomena, Focus on Biomedical, Nanoscale, NDE, Gas Sensing and Thermopysical Phenomena and Technologies, 2023-09-24/10-01, Erice (IT), No.D3, pp.1-1, 2023
4.Pieczyska E.A., Kowalczyk-Gajewska K., Staszczak M., Golasiński K., Judyta Sienkiewicz J., Janiszewski J., MECHANICAL BEHAVIOR AND THE RELATED TEMPERATURE CHANGES INVESTIGATED FOR β Ti ALLOY - GUM METAL DURING LOADING IN WIDE RANGE OF THE STRAIN RATES, ICPDF 2023, International Conference on Plasticity, Damage, and Fracture, 2023-01-03/01-09, Punta Cana (DM), pp.1-1, 2023
5.Pieczyska E., Golasiński K., Janiszewski J., INFLUENCE OF THE STRAIN RATE ON THE MECHANICAL AND STRUCTURE CHARACTERISATION OF GUM METAL, 38DAS, 38. Danubia-Adria Symposium on Advances in Experimental Mechanics, 2022-09-20/09-23, Poros Island (GR), pp.1-2, 2022
6.Pieczyska E., Golasiński K., Staszczak M., Janiszewski J., Sienkiewicz J., Takeda K., TI-BETA ALLOY - GUM METAL AND TINI SHAPE MEMORY ALLOY SUBJECTED TOCOMPRESSION LOADING IN WIDE RANGE OF THE STRAIN RATES, CMM-SolMech 2022, 24th International Conference on Computer Methods in Mechanics; 42nd Solid Mechanics Conference, 2022-09-05/09-08, Świnoujście (PL), No.279, pp.1-1, 2022
7.Pieczyska E.A., Golasiński K.M., Staszczak M., Janiszewski J., Sienkiewicz J., Kuramoto S., Takesue N., GUM METAL SUBJECTED TO COMPRESSION LOADING IN A WIDE SPECTRUM OF THE STRAIN RATES, ICEM, 19th International Conference on Experimental Mechanics, 2022-07-17/07-21, Kraków (PL), pp.270-271, 2022
8.Pieczyska E.A., Golasiński K., Staszczak M., Janiszewski J., Sienkiewicz J., Ti alloy - Gum Metal subjected to compression in wide range of the strain rates, 64th Course: PROGRESS IN PHOTOACOUSTIC & PHOTOTHERMAL PHENOMENA, 2021-10-16/10-23, ERICE-SICILY (IT), No.C9, pp.52-52, 2021
9.Pawłowski P., Płatek P., Sarzyński M., Kaźmierczak K., Suwała G., Frąś T., Janiszewski J., Mechanical response of additively manufactured 2D regular cellular structures made of MS1 steel powder subjected to uniaxial loading tests, AMT 2018, IUTAM Symposium on Mechanical design and analysis for AM technologies, 2018-08-20/08-25, Moskwa (RU), pp.1-4, 2018