mgr Jan Cholewiński


Ostatnie publikacje
1.Łażewski J., Jochym P.T., Piekarz P., Sternik M., Parlinski K., Cholewiński J., Dłużewski P., Krukowski S., DFT modelling of the edge dislocation in 4H-SiC, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10853-019-03630-5, Vol.54, No.15, pp.10737-10745, 2019

Streszczenie:

We have presented ab initio study, based on density functional theory methods, of full-core edge dislocation impact on basic properties of 4H-SiC semiconductor. To enable calculations in periodic boundary conditions, we have proposed geometry with two dislocations with opposite Burgers vectors. For this geometry, which determines the distance between dislocations, we have estimated the creation energy per unit length of a single-edge dislocation. The radial distribution function has been used to assess the effect of the dislocations on the local crystal structure. The analysis of the electronic structure reveals mid-gap p states induced by broken atomic bonds in the dislocation core. The maps of charge distribution and electrostatic potential have been calculated, and the significant decrease in the electrostatic barriers in the vicinity of the dislocation cores has been quantified. The obtained results have been discussed in the light of previous findings and calculations based mainly on phenomenological models.

Afiliacje autorów:

Łażewski J.-Institute of Nuclear Physics, Polish Academy of Sciences (PL)
Jochym P.T.-Institute of Nuclear Physics, Polish Academy of Sciences (PL)
Piekarz P.-Institute of Nuclear Physics, Polish Academy of Sciences (PL)
Sternik M.-Institute of Nuclear Physics, Polish Academy of Sciences (PL)
Parlinski K.-Institute of Nuclear Physics, Polish Academy of Sciences (PL)
Cholewiński J.-other affiliation
Dłużewski P.-IPPT PAN
Krukowski S.-Institute of High Pressure Physics, Polish Academy of Sciences (PL)
100p.
2.Cholewiński J., Maździarz M., Jurczak G., Dłużewski P., Dislocation core reconstruction based on finite deformation approach and its application to 4H-SiC crystal, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, DOI: 10.1615/IntJMultCompEng.2014010679, Vol.12, No.5, pp.411-421, 2014

Streszczenie:

A proper reconstruction of discrete crystal structure with defects is an important problem in dislocation theory. Currently, procedures for dislocation core reconstruction presented in the literature usually neglect configuration changes. The present paper discusses a new approach, which uses an iterative algorithm to determine an atomistic configuration of the dislocation core. The mathematical background is based on finite deformation theory, in which an iterative algorithm searches for the new atomic configuration corresponding to the actual atomic configuration of the deformed crystal. Its application to the reconstruction of 4H-SiC crystal affected by the system of four threading dislocations is presented as an example. Molecular statics calculations suggest a lower potential energy, as well as dislocation core energy, per-atom energy, and per-atom stresses for the structure reconstructed by use of the iterative algorithm against the classical solution based on the Love's equations.

Słowa kluczowe:

dislocation, dislocation core energy, finite deformation, molecular statics

Afiliacje autorów:

Cholewiński J.-other affiliation
Maździarz M.-IPPT PAN
Jurczak G.-IPPT PAN
Dłużewski P.-IPPT PAN
25p.
3.Dłużewski P., Cholewiński J., Continuum and atomistic modelling of crystal defects, Annual Report - Polish Academy of Sciences, ISSN: 1640-3754, pp.80-82, 2013

Prace konferencyjne
1.Maździarz M., Nalepka K.T., Dłużewski P., Cholewiński J., Reconstruction of dislocations in interface layer Cu-Al2O3, MMM2010, 5th International Conference Multiscale Materials Modeling, 2010-10-04/10-08, Freiburg (GE), pp.482-485, 2010

Streszczenie:

Using three different methods namely, CDT (Continuous Dislocation Theory), molecular TB - SMA (Tight Binding Second Moment Approximation) type many - body potential, and MEM (Molecular Effective Medium) theory, we are looking for the best possible reconstruction of dislocations in Cu - Al 2 O 3 heterostructure.

Afiliacje autorów:

Maździarz M.-IPPT PAN
Nalepka K.T.-IPPT PAN
Dłużewski P.-IPPT PAN
Cholewiński J.-other affiliation

Abstrakty konferencyjne
1.Dłużewski P., Cholewiński J., Maździarz M., Tauzowski P., Nalepka K.T., Atomistic/continuum reconstruction of misfit dislocations and stacking faults in Cu/sapphire interfacial region, CMM 2011, 19th International Conference on Computer Methods in Mechanics, 2011-05-09/05-12, Warszawa (PL), pp.257-1-2, 2011

Streszczenie:

A method for reconstruction of atomistic models of dislocations and stacking faults in the interfacial region of heterostructures is presented. Its mathematical foundations come back to the algebra of the finite deformation fields related to introducing of discrete dislocations into an initially coherent interface. From the practical point of view the method concerns generation of interfacial regions with misfit/treading partial dislocations and stacking faults being formed in the interfacial region between crystal structures of different crystallographic type.

Słowa kluczowe:

atomistic models, dislocations, stacking faults, lattice distortion

Afiliacje autorów:

Dłużewski P.-IPPT PAN
Cholewiński J.-other affiliation
Maździarz M.-IPPT PAN
Tauzowski P.-IPPT PAN
Nalepka K.T.-IPPT PAN