Partner: Yong Zhang |
|
Ostatnie publikacje
1. | Jenczyk P., Jarząbek D.M., Lu Z.♦, Gadalińska E.♦, Levintant-Zayonts N., Zhang Y.♦, Unexpected crystallographic structure, phase transformation, and hardening behavior in the AlCoCrFeNiTi0.2 high-entropy alloy after high-dose nitrogen ion implantation, Materials & Design, ISSN: 0264-1275, DOI: 10.1016/j.matdes.2022.110568, Vol.216, pp.110568-1-11, 2022 Streszczenie: Harsh environments, such as nuclear power plants, require the development of materials with stable properties when exposed to radiation/bombardment conditions. In this work, a bulk high-entropy alloy (HEA) was implanted with nitrogen ions accelerated at 50 kV to induce and study crystal structural defects. X-ray powder diffraction (XRD) showed that the studies HEA consisted of two phases—σ and body-centered cubic (BCC)—and underwent the σ to BCC phase transformation due to ion bombardment. Unexpectedly, XRD peaks of implanted samples could not be assigned to any known simple nitride, a finding that suggests the creation of new high- or medium-entropy ceramics. Studies of the mechanical and tribological properties with the use of nanoindentation and scratch tests revealed a hardening of both phases of the implanted surface and higher wear resistance. There were also surprising increases in the hardness-to-Young’s modulus ratio and elastic recovery for both phases. The results are promising not only for the nuclear applications, but also for space applications, mechanical engineering, and tribology. Słowa kluczowe: high-entropy alloys, high-entropy ceramics, ion implantation, irradiation, phase transformation Afiliacje autorów:
| 140p. |