
Partner: Sohrab Asgaran |
Ostatnie publikacje
1. | Nwaji N., Fikadu B. B.♦, Osial M., Warczak M.♦, Moazzami Goudarzi Z., Gniadek M.♦, Asgaran S.♦, Lee J.♦, Giersig M., Advanced Functional NiCo 2 S4 @CoMo2 S4 Heterojunction Couple as Electrode for Hydrogen Production via Energy-Saving Urea Oxidation, Small, ISSN: 1613-6810, DOI: 10.1002/smll.202410848, Vol.2410848, pp.1-13, 2025![]() Streszczenie: The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge Afiliacje autorów:
| ![]() | 200p. | |||||||||||||||||||||||||||
2. | Boka Fikadu B.♦, Mahendra G.♦, Nwaji N., Juyoung G.♦, Gicha B.♦, Hyojin K.♦, Asgaran S.♦, Hee-Joon C.♦, Lee J.♦, Defect Engineered Ru-CoMOF@MoS2 HeterointerfaceFacilitate Water Oxidation Process, Chemistry Europe, ISSN: 1864-564X, DOI: 10.1002/cssc.202402533, pp.1-12, 2025![]() Streszczenie: Catalyst design plays a critical role in ensuring sustainable andeffective energy conversion. Electrocatalytic materials need tobe able to control active sites and introduce defects in bothacidic and alkaline electrolytes. Furthermore, producing efficientcatalysts with a distinct surface structure advances ourcomprehension of the mechanism. Here, a defect-engineeredheterointerface of ruthenium doped cobalt metal organic frame(Ru-CoMOF) core confined in MoS2 is reported. A tailored designapproach at room temperature was used to induce defects andform an electron transfer interface that enhanced the electro-catalytic performance. The Ru-CoMOF@MoS2 heterointerfaceobtains a geometrical current density of 10 mA-2 by providinghydrogen evolution reaction (HER) and oxygen evolutionreaction (OER) at small overpotentials of 240 and 289 mV,respectively. Density functional theory simulation shows thatthe Co-site maximizes the evolution of hydrogen intermediateenergy for adsorption and enhances HER, while the Ru-site, onthe other hand, is where OER happens. The heterointerfaceprovides a channel for electron transfer and promotes reactionsat the solid-liquid interface. The Ru-CoMOF@MoS2 modelexhibits improved OER and HER efficiency, indicating that itcould be a valuable material for the production of water-alkaline and acidic catalysts Afiliacje autorów:
| ![]() | 140p. | |||||||||||||||||||||||||||
3. | Nwaji N., Fikadu B.♦, Osial M., Moazzami Goudarzi Z., Asgaran S.♦, Teshome Tufa L.♦, Lee J.♦, Giersig M., Disentangling the catalytic origin in defect engineered 2D NiCoMoS@Ni(CN)2 core-shell heterostructure for energy-saving hydrazine-assisted water oxidation, International Journal of Hydrogen Energy, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2024.08.432, Vol.86, pp.554-563, 2024![]() Streszczenie: The major hindrance to efficient electrocatalytic hydrogen generation from water electrolysis is the sluggish kinetics with corresponding large overvoltage of oxygen evolution reaction. Herein, we report a defective 2D NiCoMoS@Ni(CN)2 core-shell heterostructure derived from Hofmann-type MOF as an efficient and durable high-performance noble metal-free electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The sluggish oxygen evolution reaction was replaced with a more thermodynamically favourable HzOR, enabling energy-saving electrochemical hydrogen production with 2D NiCoMoS@Ni(CN)2 acting as a bifunctional electrocatalyst for anodic HzOR and cathodic hydrogen generation. Operating at room temperature, the two-electrode electrolyzer delivers 100 mA cm−2 from a cell voltage of just 257 mV, with strong long-term electrochemical durability and nearly 100% Faradaic efficiency for hydrogen evolution in 1.0 M KOH aqueous solution with 0.5 M hydrazine. The density functional theory (DFT) was employed to investigate the origin of catalytic performance and showed that high vacancy creation within the heterointerface endowed NiCoMoS@Ni(CN)2 with favourable functionalities for excellent catalytic performance. Słowa kluczowe: Defect engineering, Core-shell, Electrocatalyst, Hydrazine oxidation, Heterostructure Afiliacje autorów:
| ![]() | 140p. |