Partner: Riki McDaniel

Drexel University (US)

Ostatnie publikacje
1.Mayerberger E.A., Urbanek O., McDaniel R.M., Street R.M., Barsoum M.W., Schauer C.L., Preparation and characterization of polymer-Ti3C2Tx(MXene) composite nanofibers produced via electrospinning, JOURNAL OF APPLIED POLYMER SCIENCE, ISSN: 0021-8995, DOI: 10.1002/app.45295, Vol.134, No.37, pp.45295-1-7, 2017

Streszczenie:

MXene, a recently-discovered family of two-dimensional (2 D) transition metal carbides and/or nitrides, have attracted much interest because of their unique electrical, thermal, and mechanical properties. In this study, poly(acrylic acid) (PAA), polyethylene oxide (PEO), poly(vinyl alcohol) (PVA), and alginate/PEO were electrospun with delaminated Ti3C2 (MXene) flakes. The effect of small additions of delaminated Ti3C2 (1% w/w) on the structure and properties of the nanofibers were investigated and compared with those of the neat polymer nanofibers using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Ti3C2 had an effect on the solution properties of the polymer and a greater effect on the average fiber diameter. The Ti3C2Tx/PEO solution exhibited the largest change in viscosity and conductivity with an 11% and 73.6% increase over the base polymer, respectively. X-ray diffractograms demonstrated a high degree of crystallization for Ti3C2/PEO and a slight decrease in crystallinity for Ti3C2/PVA.

Słowa kluczowe:

composite nanofibers, electrospinning, MXene

Afiliacje autorów:

Mayerberger E.A.-Drexel University (US)
Urbanek O.-IPPT PAN
McDaniel R.M.-Drexel University (US)
Street R.M.-Drexel University (US)
Barsoum M.W.-Drexel University (US)
Schauer C.L.-Drexel University (US)
25p.