Partner: R. Tang


Ostatnie publikacje
1.Jain A., Manippady S., Tang R., Nishihara H., Sobczak K., Matejka V., Michalska M., Vanadium oxide nanorods as an electrode material for solid state supercapacitor, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-022-25707-z, Vol.12, No.21024, pp.1-12, 2022

Streszczenie:

The electrochemical properties of metal oxides are very attractive and fascinating in general, making them a potential candidate for supercapacitor application. Vanadium oxide is of particular interest because it possesses a variety of valence states and is also cost effective with low toxicity and a wide voltage window. In the present study, vanadium oxide nanorods were synthesized using a modified sol–gel technique at low temperature. Surface morphology and crystallinity studies were carried out by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. To the best of our knowledge, the as-prepared nanorods were tested with magnesium ion based polymer gel electrolyte for the first time. The prepared supercapacitor cell exhibits high capacitance values of the order of ~ 141.8 F g−1 with power density of ~ 2.3 kW kg−1 and energy density of ~ 19.1 Wh kg−1. The cells show excellent rate capability and good cycling stability.

Afiliacje autorów:

Jain A.-IPPT PAN
Manippady S.-IPPT PAN
Tang R.-other affiliation
Nishihara H.-other affiliation
Sobczak K.-other affiliation
Matejka V.-other affiliation
Michalska M.-Łukasiewicz Research Network‒Institute of Electronic Materials Technology (PL)
140p.