Partner: Paweł Chodkiewicz |
|
Ostatnie publikacje
1. | Piranda B.♦, Chodkiewicz P.♦, Hołobut P., Bordas S.P.A.♦, Bourgeois J.♦, Lengiewicz J., Distributed prediction of unsafe reconfiguration scenarios of modular robotic programmable matter, IEEE TRANSACTIONS ON ROBOTICS, ISSN: 1552-3098, DOI: 10.1109/TRO.2021.3074085, Vol.37, No.6, pp.2226-2233, 2021 Streszczenie: We present a distributed framework for predicting whether a planned reconfiguration step of a modular robot will mechanically overload the structure, causing it to break or lose stability under its own weight. The algorithm is executed by the modular robot itself and based on a distributed iterative solution of mechanical equilibrium equations derived from a simplified model of the robot. The model treats intermodular connections as beams and assumes no-sliding contact between the modules and the ground. We also provide a procedure for simplified instability detection. The algorithm is verified in the Programmable Matter simulator VisibleSim, and in real-life experiments on the modular robotic system Blinky Blocks. Słowa kluczowe: distributed algorithms, modular robots, mechanical constraints, programmable matter, self-reconfiguration Afiliacje autorów:
| 200p. | |||||||||||||||||||
2. | Chodkiewicz P.♦, Lengiewicz J., Zalewski R.♦, Discrete element method approach to modelling VPP dampers, MATEC Web of Conferences, ISSN: 2261-236X, DOI: 10.1051/matecconf/201815702014, Vol.157, No.02014, pp.1-8, 2018 Streszczenie: In this paper, we present a novel approach to modeling and analysis of Vacuum Packed Particle dampers (VPP dampers) with the use of Discrete Element Method (DEM). VPP dampers are composed of loose granular medium encapsulated in a hermetic envelope, with controlled pressure inside the envelope. By changing the level of underpressure inside the envelope, one can control mechanical properties of the system. The main novelty of the DEM model proposed in this paper is the method to treat special (pressure) boundary conditions at the envelope. The model has been implemented within the open-source Yade DEM software. Preliminary results are presented and discussed in the paper. The qualitative agreement with experimental results has been achieved. Słowa kluczowe: VPP, discrete element method, Yade DEM, modelling, smart structures, smart materials Afiliacje autorów:
|
Prace konferencyjne
1. | Hołobut P., Chodkiewicz P.♦, Macios A.♦, Lengiewicz J., Internal localization algorithm based on relative positions for cubic-lattice modular-robotic ensembles, IROS, IROS 2016 - IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016-10-09/10-14, Daejeon, South Korea (KP), DOI: 10.1109/IROS.2016.7759473, pp.3056-3062, 2016 Streszczenie: Module localization is an important aspect of the operation of self-reconfigurable robots. The knowledge of spatial positions of modules, or at least of the overall shape which the modules form, is the usual prerequisite for reconfiguration planning. We present a general, decentralized algorithm for determining the positions of modules placed on a cubic grid from local sensor information. The connection topology of the robot is arbitrary. We assume that a module can sense the presence of its immediate neighbors on the grid and determine their positions in its own local coordinate system, but cannot sense the orientations of the coordinate systems of its neighbors. Since orientation cannot be directly communicated between modules, the modules can only exchange information about the relative positions of their neighbors. The algorithm aggregates this information over the entire network of modules and narrows down the set of valid positions for each module as far as possible. If there exists a unique locally-consistent assignment of coordinates to all modules then it is found. Afiliacje autorów:
| 15p. |
Abstrakty konferencyjne
1. | Piranda B.♦, Chodkiewicz P.♦, Hołobut P., Bordas S.♦, Bourgeois J.♦, Lengiewicz J., MODULAR ROBOTS AS DISTRIBUTED COMPUTERS OF THEIR OWN MECHANICAL STATE, CMM-SolMech 2022, 24th International Conference on Computer Methods in Mechanics; 42nd Solid Mechanics Conference, 2022-09-05/09-08, Świnoujście (PL), No.134, pp.1-1, 2022 | |||||||||||||||||||
2. | Piranda B.♦, Chodkiewicz P.♦, Hołobut P., Bordas S.♦, Bourgeois J.♦, Lengiewicz J., Distributed prediction of mechanically unsafe configurations by a system of robotic blocks, ICTAM2021, 25th International Congress of Theoretical and Applied Mechanics, 2021-08-22/08-27, Mediolan (virtual) (IT), No.0108761, pp.2413-2414, 2021 Streszczenie: Summary We present a computational scheme for predicting whether addition of new modules to an existing modular robotic structure will mechanically overload the system, causing it to break or lose stability. The algorithm is executed by the modular robot itself in a distributed way, and relies on the iterative solution of mechanical equilibrium equations derived from a simple Finite Element model of the robot. In the model, inter-modular connections are represented as beams and the contact between modules and external supports is accounted for by a predictor-corrector scheme. The algorithm is verified through simulations in the Programmable Matter simulator VisibleSim and real-life experiments on the modular robotic system Blinky Blocks. Afiliacje autorów:
| |||||||||||||||||||
3. | Chodkiewicz P.♦, Zalewski R.♦, Lengiewicz J., Dem modeling of vacuum packed particles dampers, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.208-209, 2018 |