Partner: P. Marmottant |
Ostatnie publikacje
1. | Postema M.♦, Marmottant P.♦, Lancée Ch.T.♦, Hilgenfeldt S.♦, de Jong N.♦, Ultrasound-induced microbubble coalescence, ULTRASOUND IN MEDICINE AND BIOLOGY, ISSN: 0301-5629, DOI: 10.1016/j.ultrasmedbio.2004.08.008, Vol.30, No.10, pp.1337-1344, 2004 Streszczenie: We studied the interaction of ultrasound contrast agent bubbles coated with a layer of lipids, driven by 0.5 MHz ultrasound. High-speed photography on the submicrosecond timescale reveals that some bubbles bounce off each other, while others show very fast coalescence during bubble expansion. This fast coalescence cannot be explained by dissipation-limited film drainage rates. We conclude that the lipid shell ruptures upon expansion, exposing clean free bubble interfaces that support plug flow profiles in the film and inertia-limited drainage whose time scales match those of the observed coalescence. Słowa kluczowe: Microbubble coalescence, Ultrasound contrast agent, Film drainage, High-speed photography Afiliacje autorów:
|
Prace konferencyjne
1. | Postema M.♦, Marmottant P.♦, Lancée C.T.♦, Versluis M.♦, Hilgenfeldt S.♦, de Jong N.♦, Ultrasound-induced coalescence of free gas microbubbles, IUS 2004, IEEE International Ultrasonics Symposium, 2004-08-23/08-27, Montreal (CA), DOI: 10.1109/ULTSYM.2004.1417653, Vol.1, pp.1-4, 2004 Streszczenie: When gas bubbles collide, the following stages of bubble coalescence have been reported: flattening of the opposing bubble surfaces prior to contact, drainage of the interposed liquid film toward a critical minimal thickness, rupture of the liquid film, and formation of a single bubble. During insonification, expanding contrast agent microbubbles may collide with each other, resulting in coalescence or bounce. Afiliacje autorów:
|
Abstrakty konferencyjne
1. | Postema M.♦, Marmottant P.♦, Lancée C.♦, Hilgenfeldt S.♦, de Jong N.♦, Ultrasound-induced microbubble coalescence by parametric instability, 10th Dutch Annual Conference on BioMedical Engineering, pp.177, 2003 |