Partner: Michael R.H White


Ostatnie publikacje
1.Phillips N., Manning C., Pettini T., Veronica B., Elli M., Peter S., Boyd J., Bagnall J., Paszek P., Spiller David G., White M., Goodfellow M., Tobias G., Magnus R., Nancy P., Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation, eLife, ISSN: 2050-084X, DOI: 10.7554/eLife.16118, Vol.5, pp.e16118-1-33, 2016

Streszczenie:

Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted.

Afiliacje autorów:

Phillips N.-other affiliation
Manning C.-other affiliation
Pettini T.-other affiliation
Veronica B.-other affiliation
Elli M.-other affiliation
Peter S.-other affiliation
Boyd J.-other affiliation
Bagnall J.-other affiliation
Paszek P.-IPPT PAN
Spiller David G.-other affiliation
White M.-other affiliation
Goodfellow M.-other affiliation
Tobias G.-other affiliation
Magnus R.-other affiliation
Nancy P.-other affiliation
2.Yunjiao W., Paszek P., Horton Caroline A., Hong Y., White M., Kell Douglas B., Muldoon M., Broomhead David S., A systematic survey of the response of a model NF-kB signalling pathway to TNFa stimulation, JOURNAL OF THEORETICAL BIOLOGY, ISSN: 0022-5193, DOI: 10.1016/j.jtbi.2011.12.014, Vol.297, pp.137-147, 2012

Streszczenie:

White's lab established that strong, continuous stimulation with tumour necrosis factor- () can induce sustained oscillations in the subcellular localisation of the transcription factor nuclear factor (NF-). But the intensity of the signal varies substantially, from picomolar in the blood plasma of healthy organisms to nanomolar in diseased states. We report on a systematic survey using computational bifurcation theory to explore the relationship between the intensity of stimulation and the existence of sustained NF- oscillations. Using a deterministic model developed by Ashall et al. in 2009, we find that the system's responses to are characterised by a supercritical Hopf bifurcation point: above a critical intensity of the system exhibits sustained oscillations in NF-kB localisation. For below this critical value, damped oscillations are observed. This picture depends, however, on the values of the model's other parameters. When the values of certain reaction rates are altered the response of the signalling pathway to stimulation changes: in addition to the sustained oscillations induced by high-dose stimulation, a second oscillatory regime appears at much lower doses. Finally, we define scores to quantify the sensitivity of the dynamics of the system to variation in its parameters and use these scores to establish that the qualitative dynamics are most sensitive to the details of NF- mediated gene transcription.

Słowa kluczowe:

NF-kB signalling pathway, Parameter sensitivity, Bifurcation analysis, Oscillations

Afiliacje autorów:

Yunjiao W.-other affiliation
Paszek P.-IPPT PAN
Horton Caroline A.-other affiliation
Hong Y.-other affiliation
White M.-other affiliation
Kell Douglas B.-other affiliation
Muldoon M.-other affiliation
Broomhead David S.-other affiliation
35p.
3.Yunjiao W., Paszek P., Horton Caroline A., Kell Douglas B., White M., Broomhead David S., Muldoon M., Interactions among oscillatory pathways in NF-kappa B signaling, BMC SYSTEMS BIOLOGY, ISSN: 1752-0509, DOI: 10.1186/1752-0509-5-23, Vol.5, pp.23-1-11, 2011

Streszczenie:

Background

Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways.
Results

First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics.
Conclusions

Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently weak stimulation. Further simulations suggest that the nonlinearities of the NF-kappa B feedback oscillator mean that even sinusoidally modulated forcing can induce a rich variety of nonlinear interactions.

Afiliacje autorów:

Yunjiao W.-other affiliation
Paszek P.-IPPT PAN
Horton Caroline A.-other affiliation
Kell Douglas B.-other affiliation
White M.-other affiliation
Broomhead David S.-other affiliation
Muldoon M.-other affiliation
40p.
4.Paszek P., Jackson Dean A., White M., Oscillatory control of signalling molecules, Current Opinion in Genetics & Development, ISSN: 0959-437X, DOI: 10.1016/j.gde.2010.08.004, Vol.20, No.6, pp.670-676, 2010

Streszczenie:

The emergence of biological function from the dynamic control of cellular signalling molecules is a fundamental process in biology. Key questions include: How do cells decipher noisy environmental cues, encode these signals to control fate decisions and propagate information through tissues? Recent advances in systems biology, and molecular and cellular biology, exemplified by analyses of signalling via the transcription factor Nuclear Factor kappaB (NF-κB), reveal a critical role of oscillatory control in the regulation of these biological functions. The emerging view is that the oscillatory dynamics of signalling molecules and the epigenetically regulated specificity for target genes contribute to robust regulation of biological function at different levels of cellular organisation through frequency-dependent information encoding.

Previous article in issue

Afiliacje autorów:

Paszek P.-IPPT PAN
Jackson Dean A.-other affiliation
White M.-other affiliation