Partner: M. Spychalski


Ostatnie publikacje
1.Borowski T., Zielińska K., Spychalski M., Adamczyk-Cieślak B., Żrodowski Ł., Effect of oxidation temperature on the properties of niobium in view of its biomedical applications, SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2023.129911, Vol.473, No.129911, pp.1-11, 2023

Streszczenie:

Four-hour oxidation processes of niobium in an air atmosphere at temperatures of 400 °C, 425 °C, 450 °C and 500 °C were carried out. In order to characterise the layers produced, the cross-sectional microstructure, chemical and phase composition as well as surface roughness were examined. The mechanical properties of the surface were determined by performing Vickers microhardness tests. In order to verify the properties from a biological point of view, contact angle analysis and corrosion tests in Ringer's solution were carried out. The results revealed the formation of layers composed of a solid solution of oxygen in niobium Nb(O) at oxidation temperatures of 400 °C, a solution of Nb(O) and niobium pentoxide Nb2O5 at 425 °C, and Nb2O5 at 450 °C and 500 °C. Increased oxidation temperature resulted in an increase in hardness and surface roughness, and each process contributed to improved corrosion resistance. Oxidation at too high temperature (≥450 °C) caused degradation of the material's surface due to niobium's low heat resistance. At 450 °C the first cracks in the material were visible, and at 500 °C the layer was inhomogeneous, brittle and underwent significant chipping. The highest hardness, roughness and hydrophobic properties were shown by niobium oxidised at 500 °C, which underwent surface degradation at this temperature. In turn, niobium oxidised at 400 °C and 425 °C showed outstanding properties in the biological aspect, achieving both high hydrophilicity and the highest corrosion resistance.

Słowa kluczowe:

Niobium, Oxidation, Microstructure, Corrosion, Contact angle, Surface engineering

Afiliacje autorów:

Borowski T.-other affiliation
Zielińska K.-other affiliation
Spychalski M.-other affiliation
Adamczyk-Cieślak B.-other affiliation
Żrodowski Ł.-other affiliation
100p.
2.Miętus M., Kolankowski K., Gołofit T., Denis P., Bandzerewicz A., Spychalski M., Mąkosa-Szczygieł M., Pilarek M., Wierzchowski K., Gadomska-Gajadhur A., From Poly(glycerol itaconate) Gels to Novel Nonwoven Materials for Biomedical Applications, Gels, ISSN: 2310-2861, DOI: 10.3390/gels9100788, Vol.9, No.788, pp.1-19, 2023

Streszczenie:

Electrospinning is a process that has attracted significant interest in recent years. It provides the opportunity to produce nanofibers that mimic the extracellular matrix. As a result, it is possible to use the nonwovens as scaffolds characterized by high cellular adhesion. This work focused on the synthesis of poly(glycerol itaconate) (PGItc) and preparation of nonwovens based on PGItc gels and polylactide. PGItc gels were synthesized by a reaction between itaconic anhydride and glycerol. The use of a mixture of PGItc and PLA allowed us to obtain a material with different properties than with stand-alone polymers. In this study, we present the influence of the chosen ratios of polymers and the OH/COOH ratio in the synthesized PGItc on the properties of the obtained materials. The addition of PGItc results in hydrophilization of the nonwovens’ surface without disrupting the high porosity of the fibrous structure. Spectral and thermal analyzes are presented, along with SEM imagining. The preliminary cytotoxicity research showed that nonwovens were non-cytotoxic materials. It also helped to pre-determine the potential application of PGItc + PLA nonwovens as subcutaneous tissue fillers or drug delivery systems.

Słowa kluczowe:

poly(glycerol itaconate), polylactide, electrospinning, tissue engineering, hydrogels

Afiliacje autorów:

Miętus M.-other affiliation
Kolankowski K.-other affiliation
Gołofit T.-other affiliation
Denis P.-IPPT PAN
Bandzerewicz A.-Politechnika Warszawska (PL)
Spychalski M.-other affiliation
Mąkosa-Szczygieł M.-other affiliation
Pilarek M.-other affiliation
Wierzchowski K.-other affiliation
Gadomska-Gajadhur A.-Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
20p.

Patenty
Numer/data zgłoszenia patentowego
Ogłoszenie o zgłoszeniu patentowym
Twórca / twórcy
Tytuł
Kraj i Nazwa uprawnionego z patentu
Numer patentu
Ogłoszenie o udzieleniu patentu
pdf
378862
2006-02-01
BUP 16/2007
2007-08-06
Kurzydłowski K., Michalski J., Mikołajek J., Spychalski M., Karniłowicz J., Kukla D., Zagórski A., Spychalski W., Paradowski K.
Urządzenie do miejscowego zamrażania medium w rurach
PL, Materials Engineers Group sp. z o.o.
209367
WUP 08/2011
2011-08-31